斜率优化---感谢此文让我彻底弄懂斜率优化

斜率优化---感谢此文让我彻底弄懂斜率优化

若深究斜率优化,有重重疑惑,建议学习此文.

阅遍网上大量 斜率优化 文章,唯独此文,将本人疑惑一一解清,作为之前几乎不转载的作者,今日,郑重将此文转载,原文来自https://www.cnblogs.com/terribleterrible/p/9669614.html有删改。

https://www.luogu.org/problemnew/solution/P3195?page=3作者: Brioche 更新时间: 2018-09-18 17:09 发现此文,埋没了,实在可惜。

[HNOI2008]玩具装箱TOY   //在线测评地址https://www.luogu.org/problemnew/show/P3195

"这是一道经典的斜率优化入门题,就用这题来作个总结好了."
这道题用到的是单调队列(我只会这玩意儿)的斜率优化.
我们整理一下题意会发现它的状态转移方程就是下面这东西:

dp[i]=min(dp[j]+(sum[i]+i−sum[j]−j−L−1)^2),i>j



上面这张图讲得已经很清楚了.
我们如果把含j的相关变量都看成点的坐标的话,此时我们要做的就是尽量让截距更小.
怎么让截距最小呢?难道一个一个比较吗?
我们再来看下面这张图:


上面三个点是我们可供选择的三个点,这条直线就是我们就是要使这条一直斜率的截距最小.
高中数学学线性规划的时候我们都知道,显然是选途中的B点.
那么对于这一条直线,我们根据斜率和坐标可以计算截距,从而得到dp值.
那剩下两个点呢?
对于A点,我们是不是可以丢掉它了?是的,由于我们的斜率是不断增大的,A点是不可能用来转移后面的状态了,所以把它剔除.
还有C点,当斜率到达一定大小,例如下图:


此时我们就要用到C,而B又可以剔除.
于是我们只要维护一个凸包,而且这个凸包相邻两个点连的斜率要大于当前这条线的斜率.就像刚刚这个例子一样.一旦最左端的一个点和次左端的点的连线要小于当前的斜率了,就把最左端的点剔除.
这样每次遇到新的直线,直接拿最左端的点(队头)来转移,加入一个新点就加到最右边(队尾),因为横坐标也是递增的.再加入这个点之前,我们一定要保证下凸的性质,例如下面这个例子:


B显然要被剔除.
为什么一定维护凸包呢?为什么一定是弹掉B.C为什么更优呢?自己想象一下,一条直线斜率大于CG的直线从下面平移上来,走啊走,最后一定会在C这里停下.如果是一条斜率小于GC大于GF的,显然会在G停下,这样B

就没有人和用武之地了.

在这里我们总结一下,单调队列斜率优化的步骤:
1.弹队头,就是最左边的点.
2.放直线,算答案,得到当前状态的答案,得到新的待加入的点.
3.弹队尾,把插入新点之后不合法的点弹掉.最后加入新点就好了.

//P3195 [HNOI2008]玩具装箱TOY
//在线测评地址https://www.luogu.org/problemnew/show/P3195
//有思路,但数学式子推得很乱,
//翻看https://www.cnblogs.com/Paul-Guderian/p/7259491.html推导
//发现,一个换元,想到了,但没付出实践;一个L++,确实没想到。就这两下,式子变得简单多了。
//dp[j]+(sum[j]+j+L)*(sum[j]+j+L)-(dp[k]+(sum[k]+k+L)*(sum[k]+k+L)<=2*(sum[i]+i)*((sum[j]+j+L)-(sum[k]+k+L))
//样例通过,提交AC。2019-3-6
//建议以下两篇文章一起看,对理解 斜率优化, 很有帮助
//https://www.luogu.org/problemnew/solution/P3195?page=3
//作者: hongzy 更新时间: 2018-10-26 22:45
//作者: Brioche 更新时间: 2018-09-18 17:09
#include <stdio.h>
#define LL long long
#define maxn 50100
LL n,L,sum[maxn],q[maxn],dp[maxn],h,t;
LL getUp(LL k,LL j){
    return dp[j]+(sum[j]+j+L)*(sum[j]+j+L)-(dp[k]+(sum[k]+k+L)*(sum[k]+k+L));//此处写成return dp[j]+(sum[j]+j+L)*(sum[j]+j+L)-dp[k]+(sum[k]+k+L)*(sum[k]+k+L);
}
LL getDown(LL k,LL j){
    return (sum[j]+j+L)-(sum[k]+k+L);
}
int main(){
    LL i,u;
    scanf("%lld%lld",&n,&L);
    L++,sum[0]=0;
    for(i=1;i<=n;i++)scanf("%lld",&sum[i]);
    for(i=1;i<=n;i++)sum[i]+=sum[i-1];
    dp[0]=0,h=t=1,q[t]=0,t++;
    for(i=1;i<=n;i++){
        while(h+1<t&&getUp(q[h],q[h+1])<=2*(sum[i]+i)*getDown(q[h],q[h+1]))h++;
        u=q[h];
        dp[i]=dp[u]+(sum[i]-sum[u]+i-u-L)*(sum[i]-sum[u]+i-u-L);
        while(h+1<t&&getUp(q[t-2],q[t-1])*getDown(q[t-1],i)>=getUp(q[t-1],i)*getDown(q[t-2],q[t-1])) t--;
        q[t]=i,t++;
    }
    printf("%lld\n",dp[n]);
    return 0;
}

 

  • 11
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值