排序算法之 冒泡排序 及其时间复杂度和空间复杂度

        冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

算法分析

        冒泡排序算法是所有排序算法中最简单的(前面也提到过),在生活中应该也会看到气泡从水里面出来时,越到水面上气泡就会变的越大。在物理上学气压的时候好像也看到过这种现象;其实理解冒泡排序就可以根据这种现象来理解:每一次遍历,都把大的往后面排(当然也可以把小的往后面排),所以每一次都可以把无序中最大的(最小)的元素放到无序的最后面(或者说有序元素的最开始);

        基本步骤:

     1、外循环是遍历每个元素,每次都放置好一个元素;   

     2、内循环是比较相邻的两个元素,把大的元素交换到后面;

     3、等到第一步中循环好了以后也就说明全部元素排序好了;


代码实现

 #include<stdio.h>
 //打印数组元素
 void print_array(int *array, int length)
 {
     int index = 0;
     printf("array:\n");
     for(; index < length; index++){
         printf(" %d,", *(array+index));
     }   
     printf("\n\n");
 }
 
 void bubbleSort(int array[], int length)
 {
     int i, j, tmp;
     
     if (1 >= length) return;// 判断参数条件
 
     for (i = length-1; i > 0; i--){//外循环,循环每个元素
         for (j = 0; j < i; j++){  // 内循环,
             if (array[j] > array[j+1]){// 交换相邻的两个元素
                 tmp        = array[j];
                 array[j]   = array[j+1];
                 array[j+1] = tmp;
             }   
         }   
     }   
 }

 int main(void)
 {
     int array[12] = {1,11,12,4,2,6,9,0,3,7,8,2};
     print_array(array, 12);
     bubbleSort(array, 12);
     print_array(array, 12);
     return 0;
 }

运行结果:



时间复杂度

        这个时间复杂度还是很好计算的:外循环和内循环以及判断和交换元素的时间开销;

       最优的情况也就是开始就已经排序好序了,那么就可以不用交换元素了,则时间花销为:[ n(n-1) ] /  2;所以最优的情况时间复杂度为:O( n^2 );

       最差的情况也就是开始的时候元素是逆序的,那么每一次排序都要交换两个元素,则时间花销为:[ 3n(n-1) ] / 2;(其中比上面最优的情况所花的时间就是在于交换元素的三个步骤);所以最差的情况下时间复杂度为:O( n^2 );

        综上所述:

       最优的时间复杂度为:O( n^2 ) ;有的说 O(n),下面会分析这种情况;

       最差的时间复杂度为:O( n^2 );

       平均的时间复杂度为:O( n^2 );


空间复杂度

      空间复杂度就是在交换元素时那个临时变量所占的内存空间;
     最优的空间复杂度就是开始元素顺序已经排好了,则空间复杂度为:0;
     最差的空间复杂度就是开始元素逆序排序了,则空间复杂度为:O(n);
     平均的空间复杂度为:O(1);

最优时间复杂度 n

        有很多人说冒泡排序的最优的时间复杂度为:O(n);其实这是在代码中使用一个标志位来判断是否已经排序好的,修改下上面的排序代码:

 void bubbleSort(int array[], int length)
 {
     int i, j, tmp;
     int flag = 1;
     
     if (1 >= length) return;
 
     for (i = length-1; i > 0; i--, flag = 1){ 
         for (j = 0; j < i; j++){
             if (array[j] > array[j+1]){
                 tmp        = array[j];
                 array[j]   = array[j+1];
                 array[j+1] = tmp;
                 flag = 0;
             }   
         }   
         if (flag) break;
     }   
 }
        根据上面的代码可以看出,如果元素已经排序好,那么循环一次就直接退出。或者说元素开始就已经大概有序了,那么这种方法就可以很好减少排序的次数;其实我感觉这种方法也有弊端,比如 要额外的判断下,以及赋值操作;

空间复杂度为 0

        有人会说这个空间复杂度能降到0,因为空间复杂度主要是看使用的辅助内存,如果没有辅助内存变量,那么可以说空间复杂度为0;所以该算法中空间复杂度一般是看交换元素时所使用的辅助空间;
       1、 a  = a + b; b = a - b; a = a - b;
       2、 a = a * b;   b =  a / b; a = a / b;
       3、 a = a ^ b;  b =  a ^ b;a = a ^ b; 
       上面几种方法都可以不使用临时空间来交换两个元素,但是都有些潜在的问题,比如 越界;所以个人觉得还是老老实实的用个临时变量吧,这样算法意图就比较清晰了。

     转载请注明作者和原文出处,原文地址:http://blog.csdn.net/yuzhihui_no1/article/details/44339711#t5
     若有不正确之处,望大家指正,共同学习!谢谢!!!


阅读更多

没有更多推荐了,返回首页