最大异或对(Trie树)c++(个人纪录向)

首先异或就是每个十进制数都可以化为二进制数,然后将他们一一对比,相同的就是0,不同的就是1.比如3就是011,5就是101。那么3与5的异或是多少呢就是110也就是十进制的6

 如上图所示确实如此。

简单的概念理清楚了之后。就可以来解题了。首先想想暴力解法

int ans=0;
for(int i=0;i<n;i++){
    for(int j=0;j<i;j++){
      ans=max(ans,a[i[^a[j]);}

}

这样内层循环时间复杂度就是o(n)的,想办法优化一下就是用我们的trie树,把一个十进制数用二进制的形式存储到这样的一个树中

我们先插入一个数,然后再在树中serach这个数的最大异或数,这样避免了重复寻找,也就是1号和3号匹配与3号和1号匹配是一样的道理。

我们先写一下主函数:

#include<iostream>
using namespace std;
const int N=1e5+10;
const int M=31*M;//N个十进制数,最多需要31*N个节点

int s[M][2];//[2]是因为只存1和0两个数
int idx;
int cnt[M];
int a[N];//存要输入的数

int main(){
int n;
scanf("%d",&n);

for(int i=0;i<n;i++)scanf("%d",&a[i]);
int ans=0;
for(int i=0;i<n;i++){
     insert(a[i]);
     int t=quary(a[i]);
    ans=max(ans,a[i]^t);
}
printf("%d",ans);

return 0;
}

插入代码如下:

int idx=0;

vodi insert(int x)
{
int p=0//用来记录当前的节点
for(int i=30;i>=0;i--){
int u=x>>i&i;
if(!s[p][u]){s[p][u]=++idx;//赋予节点
            p=s[p][u];
}
cnt[p]=x;//用于记录p这个节点存储的是哪个数,省去了后续需要计算的步骤。
}

那么我们如何查询到与其异或的最大值呢,首先得从二进制的最高位开始查起,查与其相反的数

比如你要查1101的最大异或数,首先你就要找其同一位上的为0的数就这样按顺序找下去,若是碰到没有相反的数,那只能沿着相同的那条路走下去。直至走到最后一位,既是答案。

查询的代码如下:

int search(int x){
int p=0;
for(int i=30;i>=0;i--){
    int u=x>>i&1;
    if(s[p][!u]){
    p=s[p][!u];//往其反的数走
}    else{//若无则接着往下走
        p=s[p][u];}

}return cnt[p];

}

全部代码如下:

#include<iostream>
using namespace std;

const int N=1e5+10;
const int M=31*N;
int s[M][2];
int a[N];
int idx;
int cnt[M];
void insert(int x){
    int p=0;
    for(int i=30;i>=0;i--){
        int u=x>>i&1;
        if(!s[p][u])s[p][u]=++idx;
        p=s[p][u];
    }
    cnt[p]=x;
}
int quiry(int x){
    int p=0,res=0;
    for(int i =30;i>=0;i--){
        int u=x>>i&1;
        if(s[p][!u]){
            p=s[p][!u];
        }else{
            p=s[p][u];
        }
    }
    
    return cnt[p];
    
}
int main(){
    int n;
    scanf("%d",&n);
    int cnt=0;
    for(int i=0;i<n;i++)scanf("%d",&a[i]);
    for(int i=0;i<n;i++){
        insert(a[i]);
        int t=quiry(a[i]);
        cnt=max(cnt,a[i]^t);
    }
    printf("%d",cnt);
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值