Prim算法求最小生成树(c++)个人记录向

本文介绍了Prim算法与Dijkstra算法的区别,重点解析Prim算法中dis数组的含义,即表示到已连接集合的距离。在Prim算法中,我们寻找未加入集合的点并加入,更新与其相邻边的最短距离。尽管Prim算法适用于稠密图,但它支持负权边,不同于Dijkstra算法。文章通过实例帮助理解最小生成树的概念和构建过程。
摘要由CSDN通过智能技术生成

 

根据题意,就是让我们找一个可以联通所有点的最短路

 Prim算法和dijkstra算法十分十分之相似,但是他们最最重要的区别就在于这个dis数组,dijkstra算法的dis数组表示的是到1号点的距离,而这里求最小生成树的prim算法的dis数组表示的是到已经确定了的集合的距离。那么就需要解释一下什么是确定了的集合,比如1号点和二号点已经联通并且已经确认了其联通的最短距离,那么他们就是一个集合,其他点的dis数组就是到1号点或者2号点的最短距离,只要能走到这个集合就可以。而不是像dijkstra一样必须要到1号点

那么我们在更新dis的时候就不用像这样dis[j]=min(dis[j],dis[t]+w[j]);因为dis[t]+w[j]是到一号点的距离。那么prim算法我们一般用在稠密图中,采用邻接矩阵的方式存储。我们同样是从未加入集合的点中找到距离集合最近的点然后加入集合中,并且用它更新与之相连的边.初始的时候由于没有最近的点所以我们直接选择一号点,但是一号点的距离为0就不用ans+= 了。

所以我们的更新dis的代码就是 dis[j]=min(dis[j],g[t][j]),这里想必会有和求最短路的时候用dijkstra一样的想法,“边权为负数的话” 那么已经加入集合的话就不能修改了,所以dijkstra算法就不支持负权边。但是这个prim算法却支持负权边࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值