根据题意,就是让我们找一个可以联通所有点的最短路
Prim算法和dijkstra算法十分十分之相似,但是他们最最重要的区别就在于这个dis数组,dijkstra算法的dis数组表示的是到1号点的距离,而这里求最小生成树的prim算法的dis数组表示的是到已经确定了的集合的距离。那么就需要解释一下什么是确定了的集合,比如1号点和二号点已经联通并且已经确认了其联通的最短距离,那么他们就是一个集合,其他点的dis数组就是到1号点或者2号点的最短距离,只要能走到这个集合就可以。而不是像dijkstra一样必须要到1号点
那么我们在更新dis的时候就不用像这样dis[j]=min(dis[j],dis[t]+w[j]);因为dis[t]+w[j]是到一号点的距离。那么prim算法我们一般用在稠密图中,采用邻接矩阵的方式存储。我们同样是从未加入集合的点中找到距离集合最近的点然后加入集合中,并且用它更新与之相连的边.初始的时候由于没有最近的点所以我们直接选择一号点,但是一号点的距离为0就不用ans+= 了。
所以我们的更新dis的代码就是 dis[j]=min(dis[j],g[t][j]),这里想必会有和求最短路的时候用dijkstra一样的想法,“边权为负数的话” 那么已经加入集合的话就不能修改了,所以dijkstra算法就不支持负权边。但是这个prim算法却支持负权边