Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
Example:
Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1].
Approach #1 Brute Force 我的解法
class Solution {
public int[] twoSum(int[] nums, int target) {
int[] ans = new int[2];
for(int i=0;i<nums.length;i++){
int toAdd = target - nums[i];
for(int j=0;j<nums.length;j++){
if(nums[j]==toAdd&&j!=i){
ans[0] = j;
ans[1] = i;
}
}
}
return ans;
}
}
-
Time complexity : O(n^2). For each element, we try to find its complement by looping through the rest of array which takes O(n) time. Therefore, the time complexity is O(n^2).
-
Space complexity : O(1).
Approach #2 Two-pass Hash Table
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
map.put(nums[i], i);
}
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (map.containsKey(complement) && map.get(complement) != i) {
return new int[] { i, map.get(complement) };
}
}
throw new IllegalArgumentException("No two sum solution");
}
-
Time complexity : O(n)O(n). We traverse the list containing nn elements exactly twice. Since the hash table reduces the look up time to O(1)O(1), the time complexity is O(n)O(n).
-
Space complexity : O(n)O(n). The extra space required depends on the number of items stored in the hash table, which stores exactly nn elements.
通过牺牲一部分内存空间来换取更快的运行速度,使用Hash Map来完成任务, 因为哈希表的查找元素时间接近O(1). 用到了map.get(), map.put() 这些之前用过的方法。
Approach #3 One-pass Hash Table
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (map.containsKey(complement)) {
return new int[] { map.get(complement), i };
}
map.put(nums[i], i);
}
throw new IllegalArgumentException("No two sum solution");
-
Time complexity : O(n). We traverse the list containing nn elements only once. Each look up in the table costs only O(1) time.
-
Space complexity : O(n) The extra space required depends on the number of items stored in the hash table, which stores at most nn elements.
在进行循环并插入元素到表的过程中,同时检查complement 是否已经在表中,如果有解,直接返回。