大数据ETL工具对比(Sqoop, DataX, Kettle)

前言

在实习过程中,遇到了数据库迁移项目,对于数据仓库,大数据集成类应用,通常会采用ETL工具辅助完成,公司和客户使用的比较多的是Sqoop, DataXKettle这三种工具。简单的对这三种ETL工具进行一次梳理。
ETL工具,需要完成对源端数据的抽取(exat), 交互转换(transform), 加载(load)至目标端的过程。

1. Sqoop

1.1 介绍

Sqoop, SQL to Hadoop, 可以实现SQLHadoop之间的数据转换。
Apache开源的一款在Hadoop关系数据库服务器之间传输数据的工具,可以将一个关系型数据库(MySQL, Oracle等)中的数据库导入到Hadoop中的HDFS中,也可以将HDFS的数据导出到关系数据库中。
Sqoop命令的底层就是转化为MapReduce程序。 Sqoop分为import

SqoopKettleDataX都是常用的ETL(抽取、转换和加载)工具,用于数据仓库、大数据集成等应用。下面对它们的使用进行介绍。 Sqoop是一个开源工具,用于在Hadoop和关系数据库之间进行数据传输。它可以将关系型数据库中的数据导入到Hadoop的HDFS中,或者将HDFS中的数据导出到关系数据库中。Sqoop的底层是使用MapReduce程序实现的。Sqoop支持导入和导出操作,可以根据表和查询来进行数据传输,同时也支持增量和全量导入导出策略。 Kettle(也称为Pentaho Data Integration)是一个通用的数据集成工具,支持多种数据源和目标。它提供了可视化界面,使用户可以通过图形化界面来创建数据集成的连接、定义转换和逻辑。Kettle有两种脚本文件,trans用于数据转换,job用于工作流的调度和控制。Kettle还支持作业调度和监控,可以自动化执行数据集成任务。 DataX是阿里巴巴开源的数据集成工具,也支持多种数据源和目标。DataX可以进行离线批处理和实时数据抽取,支持单机部署和集群部署。它使用SQL select语句来采集数据,对数据源没有侵入性。DataX还提供了数据清洗功能,可以根据规则编写清洗脚本进行数据清洗。相对于KettleDataX在处理大数据量时具有更好的性能。 综上所述,Sqoop适用于Hadoop和关系数据库之间的数据传输,KettleDataX都是通用的数据集成工具,提供了丰富的数据转换和清洗功能。选择使用哪种工具可以根据具体的需求和场景来决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YuannaY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值