P1919 【模板】A*B Problem升级版(FFT快速傅里叶)

题解

十分简明易懂的FFT(快速傅里叶变换)
FFT(最详细最通俗的入门手册)

单位根:

( ω n 1 ) k = ω n k (\omega^1_n)^k=\omega^k_n (ωn1)k=ωnk

( ω n k ) 2 = ( ω n 1 ) 2 k = ω n 2 k (\omega^k_n)^2=(\omega^1_n)^{2k}=\omega^{2k}_n (ωnk)2=(ωn1)2k=ωn2k

ω n k = cos ⁡ ( k n 2 π ) + i sin ⁡ ( k n 2 π ) \omega^k_n=\cos(\frac{k}{n}2\pi)+i\sin(\frac{k}{n}2\pi) ωnk=cos(nk2π)+isin(nk2π)

( ω n k ) 2 = ω n 2 k = cos ⁡ ( k n 2 2 π ) + i sin ⁡ ( k n 2 2 π ) = ω n 2 k (\omega^k_n)^2=\omega^{2k}_n=\cos(\frac{k}{\frac{n}{2}}2\pi)+i\sin(\frac{k}{\frac{n}{2}}2\pi)=\omega^k_{\frac{n}{2}} (ωnk)2=ωn2k=cos(2nk2π)+isin(2nk2π)=ω2nk

ω n k = cos ⁡ ( k m o d    n n 2 π ) + i sin ⁡ ( k m o d    n n 2 π ) = ω n ( k m o d    n ) \omega^k_n=\cos(\frac{k\mod n}{n}2\pi)+i\sin(\frac{k\mod n}{n}2\pi)=\omega^{(k\mod n)}_n ωnk=cos(nkmodn2π)+isin(nkmodn2π)=ωn(kmodn)

( ω n k ) 2 = ω n 2 k = ω n 2 ( k m o d    n 2 ) (\omega^k_n)^2=\omega^k_{\frac{n}{2}}=\omega^{(k\mod \frac{n}{2})}_{\frac{n}{2}} (ωnk)2=ω2nk=ω2n(kmod2n)

ω n k + n 2 = − ω n k \omega^{k+\frac{n}{2}}_n=-\omega^k_n ωnk+2n=ωnk

ω n 0 = ω n n \omega^0_n=\omega^n_n ωn0=ωnn


系数表示:

f ( x ) = { a 0 , a 1 , a 2 . . . a n } f(x)=\{a_0,a_1,a_2...a_n\} f(x)={a0,a1,a2...an}

点值表示:

f ( x ) = { ( x 0 , f ( x 0 ) ) , ( x 1 , f ( x 1 ) ) , ( x 2 , f ( x 2 ) ) . . . ( x n − 1 , f ( x n − 1 ) ) } f(x)=\{(x_0,f(x_0)),(x_1,f(x_1)),(x_2,f(x_2))...(x_{n-1},f(x_{n-1}))\} f(x)={(x0,f(x0)),(x1,f(x1)),(x2,f(x2))...(xn1,f(xn1))}

FFT就是通过函数确定曲线,再在这条曲线上找n个点反馈回来,所以这道题里,最终的函数是2n个项,需要2n个点,再转化回系数表示


两个函数相乘用点值法表示:

A ( x ) = { ( x 0 , A ( x 0 ) ) , ( x 1 , A ( x 1 ) ) , ( x 2 , A ( x 2 ) ) . . . ( x n − 1 , A ( x n − 1 ) ) } A(x)=\{(x_0,A(x_0)),(x_1,A(x_1)),(x_2,A(x_2))...(x_{n-1},A(x_{n-1}))\} A(x)={(x0,A(x0)),(x1,A(x1)),(x2,A(x2))...(xn1,A(xn1))}

B ( x ) = { ( x 0 , B ( x 0 ) ) , ( x 1 , B ( x 1 ) ) , ( x 2 , B ( x 2 ) ) . . . ( x n − 1 , B ( x n − 1 ) ) } B(x)=\{(x_0,B(x_0)),(x_1,B(x_1)),(x_2,B(x_2))...(x_{n-1},B(x_{n-1}))\} B(x)={(x0,B(x0)),(x1,B(x1)),(x2,B(x2))...(xn1,B(xn1))}

A ∗ B = { ( x 0 , A ( x 0 ) × B ( x 0 ) ) , ( x 1 , A ( x 1 ) × B ( x 1 ) ) . . . ( x n − 1 , A ( x n − 1 × B ( x n − 1 ) ) ) } A*B=\{(x_0,A(x_0)\times B(x_0)),(x_1,A(x_1)\times B(x_1))...(x_{n-1},A(x_{n-1}\times B(x_{n-1})))\} AB={(x0,A(x0)×B(x0)),(x1,A(x1)×B(x1))...(xn1,A(xn1×B(xn1)))}


在这里插入图片描述


#include <bits/stdc++.h>
using namespace std;
const int N = 3e6 + 10;//2e6+10 re
const double pi = acos(-1);
int n, m, K;

typedef complex<double> Complex;
int rev[N];

// FFT用于用于将系数表达式A转化为点值表达式
// inv=1 FFT inv=-1 FFT^-1
void FFT(Complex A[], int n, int inv) { //下标 0~n-1 n肯定是2的整数倍幂次 不足n位的 系数由0代替
    /* int bit = 0;
     while ((1 << bit) < n) bit++;//找到最大的范围
     //去递归
     memset(rev, 0, sizeof(rev));*/
    for (int i = 0; i < n; ++i) {
        //rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
        if (i < rev[i]) swap(A[i], A[rev[i]]);
    }

    for (int mid = 1; mid < n; mid *= 2) { // mid=n/2
        //wn1 = cos(1/n*2π)+i*sin(1/n*2π)
        //    = cos(1/(2mid)*2π)+i*sin(1/(2mid)*2π)
        //    = cos(π/mid)+i*sin(π/mid)
        Complex wn = Complex(cos(pi / mid), inv * sin(pi / mid));
        for (int i = 0; i < n; i += mid * 2) { // i表示合并到哪一位了
            Complex w(1, 0);
            for (int k = 0; k < mid; ++k, w *= wn) { //扫描左半部分 得到右半部分 w=wn^k
                Complex x = A[i + k], y = w * A[i + k + mid];
                A[i + k] = x + y;
                A[i + k + mid] = x - y;
            }
        }
    }
    if (inv == -1) {
        for (int i = 0; i < n; ++i) {
            A[i] /= n;
        }
    }
}

string a, b;
Complex A[N], B[N];

int ans[N];

int main() {
    ios::sync_with_stdio(0);
    //cin >> m;//得到的m可能不是2的整数倍幂次 需要将其转化为整数倍幂次 
    cin >> a >> b;
    n = a.length();
    m = b.length();
    //倒着存
    for (int i = 0; i < n; ++i) {
        A[i] = (double) (a[n - 1 - i] - '0'); // A[i]=<x,0>

    }
    for (int i = 0; i < m; ++i) {
        B[i] = (double) (b[m - 1 - i] - '0');
    }
    
    m = m + n - 1; // A(x)最高次为n-1次 B(x)最高次为m-1次 两个函数相乘最高次为n+m-1次
    int bit = 0;
    while ((1 << bit) < m) bit++;//找到最大的范围
    n = (1 << bit) ;
    
    //先预处理每个位置最终的位置
    for (int i = 0; i < n; ++i) {
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
    }
    
    FFT(A, n, 1);
    FFT(B, n, 1);
    
    // A*B
    for (int i = 0; i < n; ++i) {
        A[i] *= B[i];
    }
    FFT(A, n, -1);//再将点值法转化为系数表达式

    //保存每一位答案 可能有进位 这里是倒着存的
    for (int i = 0; i < n; ++i) {
        //此时复数的虚部应该为0 或者 浮点误差接近0
        ans[i] += (int) (A[i].real() + 0.5);
        ans[i + 1] += ans[i] / 10;//进位
        ans[i] %= 10;
    }

    n--;
    while (!ans[n] && n) n--;//去掉因为FFT而补上的0
    for (int i = n; i >= 0; --i) {
        cout << ans[i];
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值