- 博客(110)
- 资源 (3)
- 问答 (1)
- 收藏
- 关注
原创 CUDA 编程方向第一课《并行编程导论与CUDA入门》
本文回顾了InfiniTensor训练营中CUDA编程课程的核心内容。课程首先对比了串行、并发与并行编程的特点,重点讲解了GPU并行计算的实现原理,包括CPU-GPU协作机制、线程层级组织(grid/block/thread)和索引计算。通过加法运算示例,详细解析了GPU程序编写流程、编译方法及性能优化策略,指出在满载情况下GPU性能优于CPU,但需考虑数据传输等整体耗时。课程还涉及多GPU编程基础概念,并预告后续将深入探讨性能提升和异构计算等进阶内容。QA环节解答了版本兼容性、数据竞争等实际问题。
2025-08-21 16:43:16
1383
1
原创 Datawhale AI 夏令营—科大讯飞AI大赛(大模型技术)—让大模型理解表格数据(列车信息表)
摘要:本文介绍了大模型技术方向的赛事项目,聚焦于如何让AI模型理解列车信息表数据。赛事要求基于结构化列车时刻表构建问答对数据集,并通过讯飞星辰MaaS平台进行模型微调。文章详细讲解了从数据预处理、问题生成到模型调用的完整baseline方案,重点采用模型蒸馏技术,使用编程生成问题+教师模型生成答案的方式构建高质量训练数据。同时分析了赛题难点、提升方向,并介绍了LoRA微调等关键技术概念。该项目展示了AI在智慧交通领域的应用潜力,为结构化数据理解提供了实用解决方案。
2025-07-26 22:55:13
1251
3
原创 Datawhale AI 夏令营-心理健康Agent开发学习-Task2.1
作为此次项目实践的第二个Task,我们将—— 理解大学生心理健康设计与开发的重难点!在上一节里我们大致了解了AI怎么赋能心理健康,通过一些产品了解了 心理健康Agent 大致有哪些形态,并跑通了一个“烦恼漂流瓶”的心理健康AI应用代码。相信大家已经深刻体会到AI技术应用在 大学生心理健康领域 的巨大潜力和价值。本节将深入剖析 大学生心理健康Agent 从设想到落地的重难点,并结合赛题评审标准,和大家一起探讨如何设计并开发出更优质的 ”第一道心理支持防线”~
2025-07-24 19:48:03
885
原创 Datawhale AI 夏令营—科大讯飞AI大赛(大模型技术)—让AI理解列车排期表(1)
本文介绍了基于星辰MaaS平台微调Qwen3-8B模型的过程,重点解决列车信息查询任务。分四步:报名赛事、下载数据集、执行微调训练、发布服务。文章对比了不同规模大语言模型的差异,解释了微调的必要性:通过专业数据集(如QA对)让预训练模型适应特定场景。进阶部分推荐使用LoRA方法进行参数高效微调,既能保持模型性能又降低资源消耗。全文强调先实践后理论的理念,帮助开发者快速构建专业领域的大模型应用系统。
2025-07-23 00:20:10
995
原创 Datawhale AI 夏令营-心理健康Agent开发学习-Task1
本文介绍了Datawhale 2025 AI夏令营;大学生心理健康Agent开发;项目的背景与目标。针对大学生普遍存在的抑郁、焦虑等心理问题,项目旨在利用AI技术开发24小时在线的心理健康助手,提供即时响应、情绪安抚和专业资源推荐。文章详细展示了开发流程:1)通过魔搭Notebook搭建开发环境;2)克隆项目代码;3)获取API密钥;4)运行;烦恼记忆销毁"应用demo。该项目鼓励开发者聚焦具体心理痛点(如考前焦虑),结合NLP、机器学习等技术,打造个性化心理
2025-07-22 23:30:53
1129
1
原创 科大讯飞AI大赛(大模型技术方向)基于带货视频评论的用户洞察挑战赛
【摘要】比赛聚焦直播电商场景,要求参赛者基于85条带货视频及6477条评论数据,完成商品识别、情感分析和评论聚类三大任务。任务一需精准识别推广商品(XfaiyxSmartTranslator或XfaiyxSmartRecorder);任务二需对评论进行情感分类(5类)及场景/疑问/建议识别;任务三需按5个维度对相关评论聚类(每维度5-8类)并提炼主题词。评估采用精确匹配(100分)、加权F1值(100分)和轮廓系数(100分)。参赛者可使用星火大模型或开源模型,组委会提供API资源。基线方案采用TF-IDF
2025-07-13 19:05:38
589
原创 数据库系统原理及应用——仓库管理系统
该仓库管理系统,其功能符合要求,能够完成仓库的基本入库出库,货物信息、供应商信息的修改,能够很好的实现了仓库管理系统的功能。
2024-09-07 16:42:18
11545
10
原创 动手学深度学习(一)深度学习介绍2
机器学习研究计算机系统如何利用经验(通常是数据)来提高特定任务的性能。它结合了统计学、数据挖掘和优化的思想。通常,它是被用作实现人工智能解决方案的一种手段。表示学习作为机器学习的一类,其研究的重点是如何自动找到合适的数据表示方式。深度学习是通过学习多层次的转换来进行的多层次的表示学习。深度学习不仅取代了传统机器学习的浅层模型,而且取代了劳动密集型的特征工程。最近在深度学习方面取得的许多进展,大都是由廉价传感器和互联网规模应用所产生的大量数据,以及(通过GPU)算力的突破来触发的。
2024-01-29 22:59:25
1903
3
原创 动手学深度学习(一)深度学习介绍1
时至今日,人们常用的计算机程序几乎都是软件开发人员从零编写的。比如,现在开发人员要编写一个程序来管理网上商城。经过思考,开发人员可能提出如下一个解决方案: 首先,用户通过Web浏览器(或移动应用程序)与应用程序进行交互;紧接着,应用程序与数据库引擎进行交互,以保存交易历史记录并跟踪每个用户的动态;其中,这个应用程序的核心——“业务逻辑”,详细说明了应用程序在各种情况下进行的操作。为了完善业务逻辑,开发人员必须细致地考虑应用程序所有可能遇到的边界情况,并为这些边界情况设计合适的规则。
2024-01-29 00:31:05
2267
原创 算法设计与分析:迭代法
第1关:求最大公约数。本关任务:用辗转相除法求两个整数的最大公约数。第2关:求猴子摘了多少个桃子。本关任务:求第一天共摘了多少个桃子。猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个;第二天早上又将剩下的桃子吃掉一半,又多吃了一个;以此往后,到第十天早上想再吃时,就只剩一个桃子了。第3关:杨辉三角。本关任务:用倒推法求杨辉三角并输出。
2023-05-18 22:03:21
1159
原创 算法设计与分析:分治法
第1关:分治法介绍,任务描述,本关任务:掌握分治法的基本原理,解决最大连续序列和问题。相关知识,为了完成本关任务,你需要掌握:分治法的基本原理。第2关:归并排序。理解 归并排序的算法原理 ;自己手动实现 归并排序。为了完成本关任务,你需要掌握:为了完成本关任务,你需要掌握:分治法。第3关:快速排序。理解 快速排序的算法原理 ;自己手动实现 快速排序。第4关:中值问题。本关任务: 独立完成中值问题。为了完成本关任务,你需要掌握:分治法。
2023-05-18 21:48:36
4631
3
原创 算法设计与分析:分支限界法
第1关:0/1背包问题。任务描述:本关任务:分支限界法;相关知识:为了完成本关任务,你需要掌握:0/1背包问题。第2关:旅行商问题。任务描述:本关任务:旅行商问题。相关知识:为了完成本关任务,你需要掌握:分支限界法。
2023-05-17 22:58:57
2684
原创 算法设计与分析:贪心法
第一关:贪心法任务描述:本关任务:完成 乘船问题 ;相关知识:为了完成本关任务,你需要掌握:贪心法。第二关:最小生成树任务描述:本关任务:理解并实现无向图的最小生成树相关知识:为了完成本关任务,你需要掌握:贪心算法。
2023-05-17 22:27:09
4644
原创 算法设计与分析:大整数的加减乘除运算
为了完成本关任务,你需要掌握:1.大整数的思想,2.大整数加法,3.大整数减法,4.大整数与整数的乘法,5.大整数乘法,6.大整数与整数的除法,7.n的阶乘求解思路。
2023-05-11 19:47:46
4296
原创 数据结构绪论(3)
4、某算法仅含程序段1和程序段2,程序段1的执行次数为3n2,程序段2的执行次数为 0.01n3,则该算法的时间复杂度为(C)。B、在相同的规模n下,复杂度O(n)的算法在时间上总是优于复杂度 O( 2n ) 的算法。A、某算法的时间复杂度为 O( n2 ) ,表明该算法的执行时间与 n2 成正比。6、设n是描述问题规模的非负整数,下面程序片段的时间复杂度是(A)。12、在很多情况下,数据元素的查找概率不同,算法的查找时间也不同。9、在很多情况下,数据元素的取值情况不同,算法的执行时间也不同。
2023-03-25 22:40:28
2821
1
原创 数据结构绪论(2)
1.更高层次的数据抽象2.由用户定义,用以表示应用问题的数据模型3.由基本的数据类型组成,并包括一组相关的操作抽象数据类型可以用以下三元组来表示:D:数据对象S:D上的关系集P:D上的操作集。
2023-03-23 22:59:21
575
3
原创 数据结构绪论(1)
数据元素间抽象化的相互关系,与数据的存储无关,独立于计算机,它是从具体问题抽象出来的数学模型。有且只有一个开始和一个终端节点,而且所有的结点都最多只有一个直接前趋和一个直接后继。研究非数值计算的程序设计问题中的计算机的操作对象以及它们之间的关系和操作。借助元素在存储器中的相对位置来表示数据元素间的逻辑关系。借助指示元素存储地址的指针表示数据元素间的逻辑关系。是相互之间存在一种或多种特定关系的数据元素的集合。数据元素及其关系在计算机存储器中的存储方式。相同特性数据元素的集合,是数据的一个子集。
2023-03-17 22:55:49
741
2
原创 操作系统学习(九)死锁
本章的内容关键在于理解,理解"死锁"影响系统的可靠性。死锁的产生与进程对资源的需求、进程的执行速度、资源的分配策略有关。系统应采用一定的策略实现资源分配以保证系统的安全。 在上一章中谈到的PV操作等都可能会引起死锁的产生。理解死锁产生四个必要条件,以及预防死锁、避免死锁、检测死锁和解除死锁的各种方法。理解和掌握银行家算法的原理和实现。其中重点是:死锁的防止和避免。
2022-11-29 12:16:46
2085
原创 数据挖掘与机器学习:维归约
第一关本关任务:使用 Python 语言实现 PCA 降维算法。为了完成本关任务,你需要掌握:PCA 降维的原理,如何使用 Python 实现 PCA 降维。第二关本关任务:使用python语言实现LDA算法。为了完成本关任务,你需要掌握:LDA算法原理,使用python实现算法。第三关本关任务:生成无标签数据,PCA 投影并可视化 PCA 投影。第四关本关任务:主成分分析和线性判别分析法对其进行投影,给出两种方法的投影方向。第五关本关任务:对乳腺癌数据进行主成分分析和线性分析。
2022-11-23 23:22:47
1370
原创 数据挖掘与机器学习:数据挖掘算法原理与实践:数据预处理
第一关本关任务:利用sklearn对数据进行标准化。为了完成本关任务,你需要掌握:1.为什么要进行标准化,2.Z-score标准化,3.Min-max标准化,4.MaxAbs标准化。第二关本关任务:利用sklearn对数据进行非线性转换。为了完成本关任务,你需要掌握:1.为什么要非线性转换,2.映射到均匀分布,3.映射到高斯分布。第三关本关任务:利用sklearn对数据进行归一化。第四关、本关任务:利用sklearn对标签进行OneHot编码。第五关、第六关。
2022-11-22 23:00:07
5705
原创 数据挖掘算法原理与实践:k-均值
第一关本关任务:使用Pyhton编写一个能计算所有样本质心且将所有样本到质心距离按从小到大排序的方法。为了完成本关任务,你需要掌握:1.什么是质心。第二关本关任务:使用python实现kmeans方法,并对鸢尾花数据进行聚类。为了完成本关任务,你需要掌握:1.k-means算法原理,2.k-means算法流程,3.如何确定k的值。根据提示,在右侧编辑器Begin-End处补充代码,实现kmeans方法,其中距离设为欧氏距离。
2022-11-22 22:29:48
5266
原创 数据挖掘与机器学习:组合相似分类器提高分类性能
本关任务:编写一个组合分类器。为了完成本关任务,你需要掌握:1.了解几种不同分类器 2.如何遍历数组。基于数据集多重抽样的分类器。我们可以将不同的分类器组合起来,而这种组合结果则被称为集成方法(ensemblemethod)或者元算法(meta-algorithm)。使用集成方法时会有多种形式:可以是不同算法的集成,也可以是同一算法在不同设置下的集成,还可以是数据集不同部分分配给不同分类器之后的集成。我们将介绍基于同一种分类器多个不同实例的两种计算方法。
2022-11-21 21:20:41
924
原创 基于SVM的航空发动机故障诊断系统设计
第一关本关任务:补充数据准备模块代码,应用Panads模块,生成训练数据集。第二关本关任务:要求对第一关获取的数据进行数据预处理,包括数据标准化与主成分分析降维。第三关本关任务:训练SVM并进行测试。第四关本关任务:绘制ROC曲线。
2022-11-21 21:04:06
3660
7
原创 数据挖掘与机器学习:使用朴素贝叶斯进行文档分类
本关任务:编写程序,完成朴素贝叶斯分类文档。为了完成本关任务,你需要掌握:1.朴素贝叶斯分类文档的过程,2.朴素贝叶斯分类文档的核心算法。机器学习的一个重要应用就是文档的自动分类。在文档分类中,整个文档(如一封电子邮件)是实例,而电子邮件中的某些元素则构成特征。虽然电子邮件是一种会不断增加的文本,但我们同样也可以对新闻报道、用户留言、政府公文等其他任意类型的文本进行分类。我们可以观察文档中出现的词,并把每个词的出现或者不出现作为一个特征,这样得到的特征数目就会跟词汇表中的词目一样多。
2022-11-10 17:10:25
2236
原创 机器学习 --- kNN算法
第一关本关任务:补充 python 代码,完成 kNNClassifier 类中的 fit 函数与 predict 函数。实现 kNN 算法的训练与预测功能。为了完成本关任务,你需要掌握 kNN 算法的算法流程。第二关本关任务: sklearn 中的 KNeighborsClassifier 类实现了 kNN 算法的分类功能,本关你需要使用 sklearn 中 KNeighborsClassifier 来对红酒数据进行分类。
2022-11-09 22:54:00
6762
2
原创 操作系统学习(八)进程同步与通信
本章可以说是操作系统学习中的重点与难点,主要重点掌握如下内容:分析与时间有关的错误;用PV操作实现进程的同步与互斥;用信箱实现进程通信。理解"进程"是操作系统中的基本执行单位,在多道程序设计的系统中往往同时有许多进程存在,它们要轮流占用处理器。这些交叉执行的并发进程相互之间可能是无产在,也可能是相关的。当并发进程竞争共享资源时会出现与时间有关的错误,因此,应采用进程同步与互斥手段使其合理使用共享资源,以保证系统安全。
2022-11-09 22:10:35
2672
原创 计算机操作系统学习(七)作业管理
通过本章的学习理解计算机系统中把用户要求处理的一项工作称为一个作业,作业可分为批处理作业和交互式作业两大类;掌握操作系统是如何实现作业调度和控制作业执行的;理解作业调度与进程调度之间的关系以及各自的职责。掌握本章的重点:两种控制方式;批处理作业的调度算法。学习中应该通过相互的比较记忆和理解。学习调度算法时,可以与以前学过的进程调度算法进行比较,掌握两者的原理和算法实质。比较理解两种作业控制的不同之处,掌握各自作业控制的特点。
2022-11-09 20:14:58
6395
原创 数据挖掘与机器学习:Apripori算法
第一关本关任务:编写一个能实现Apripori算法候选生成的小程序。第二关本关任务:编写一个能实现候选剪枝的小程序。第三关本关任务:编写一个能实现基于遍历的支持度计算的小程序。
2022-11-09 19:25:36
7174
3
原创 数据挖掘与机器学习:运算符的使用
第一关本关介绍 Python 中的一些基本运算符,并要求对给定的苹果和梨的数量进行算术运算、比较、赋值运算,然后输出相应的结果。第二关本关介绍运算符中的逻辑运算符,逻辑运算符能够将语句连接成更加复杂的复杂语句。第三关位运算就是对二进制按位进行运算。本关的任务就是让学习者了解并能运用 Python 中的位运算符来进行运算。第四关本关的任务就是学习并运用成员运算符。第五关本关的任务是学习并掌握身份运算符,这个运算符可以判断两个变量的存储单元是否相同。第六关是让学习者掌握运算符的优先级,并能根据要求写出运算语句。
2022-11-08 22:42:32
923
原创 数据挖掘与机器学习:循环结构
第一关本关的任务是让学习者学会使用while循环与break语句。程序的第三大结构是循环结构。第二关本关的任务是让学习者学会使用for循环与continue语句。Python 中还为我们提供了一种循环结构:for循环。第三关本关的任务是让学习者学会使用循环嵌套。在Python 中,除了while循环与for循环,还有循环嵌套。循环嵌套就是在一个循环体里嵌入另一个循环。第四关迭代器用来循环访问一系列元素,它不仅可以迭代序列,也可以迭代不是序列但是表现出序列行为的对象。本关的任务是让学习者理解与学会使用迭代器
2022-11-08 21:35:32
509
原创 数据挖掘与机器学习:数据变换
第一关本关任务:进行数据的极大极小归一化处理。根据提示,在右侧编译器中的 begin-end 代码块内完成极小极大归一化函数代码。第二关根据提示,在右侧编译器的 begin-end 代码块内完成 0 均值标准化函数代码。本关任务:进行数据的0均值标准化处理。
2022-11-08 20:39:08
1744
原创 数据挖掘与机器学习:顺序与选择结构
第一关程序最基本的结构就是顺序结构,顺序结构就是程序按照语句顺序,从上到下依次执行各条语句。本关要求学习者理解顺序结构,并对输入的三个数changeone、changetwo、plus先交换changeone、changetwo值,然后再计算changeone + plus的值。第二关程序的第二大结构就是选择结构。在此结构中,程序通过对一个代码块或者几个代码块的判断来决定接下来运行哪一个代码块。第三关程序中的选择结构中除了if-else、elif之外,还有一个三元操作符。
2022-11-06 23:04:26
314
原创 数据挖掘与机器学习:字符串处理
第一关本关任务是将两个不同的字符串,拼接形成一个字符串,并将新字符串输出来。第二关本关任务:对给定的字符串进行处理,包括字符串长度计算、大小写转换以及去除字符串前后空格等。第三关本关的任务是,给定一个字符串,要利用 Python 提供的字符串处理方法,从该字符串中,查找特定的词汇,并将其替换为另外一个更合适的词。
2022-11-06 21:12:00
724
原创 数据挖掘与机器学习:函数结构
第一关本实训的目标是让学习者了解并掌握函数结构的相关知识,本关的小目标则是让学习者先了解并掌握函数参数的有关知识。第二关函数在进行运算处理后,返回的值被称为返回值。函数返回的值是通过return语句执行。返回值能够让我们直接得到函数处理的结果,而不必关心函数内部复杂繁重的运算过程,大大提高了编程效率。第三关函数是有使用范围的,在一个模块中,我们可以定义很多函数和变量。本关的目标就是让学习者了解并掌握函数的使用范围,即 Python 作用域的相关知识。
2022-11-06 20:37:41
797
原创 数据挖掘与机器学习:函数调用
第一关本关目标是让学习者了解并掌握一些常用的 Python 内置函数的用法。第二关函数被定义后,本身是不会自动执行的,只有在被调用后,函数才会被执行,得到相应的结果。第三种我们一般将字符串、列表等变量作为参数进行函数调用。但函数本身也是一个对象,所以我们也可以将函数作为参数传入另外一个函数中并进行调用。本关的目标是让学习者了解并掌握函数作为参数传入另外一个函数中并进行调用的相关知识。
2022-11-03 22:49:11
379
原创 数据挖掘与机器学习:玩转列表
第一关本关任务是对一个给定的列表进行增、删、改等操作,并输出变化后的最终列表。第二关本关的任务是学会列表排序相关操作的使用方法,实现对列表元素的排序。第三关本关任务是利用合适的方法快速创建数字列表,并能够对列表中的元素数值进行简单的统计运算。第四关我们在前三关中学习了如何处理单个列表元素和所有列表元素,在这一关中我们还将学习如何处理部分列表元素(Python 中称为切片)。
2022-11-03 21:47:17
1638
【并行计算与CUDA编程】GPU编程基础及并行计算入门:从理论到实践的全面解析
2025-08-21
这个是怎么回事,用sln打开。
2022-05-22
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅