【机器学习】003_线性回归模型Part.2_理论过程(2)

本文介绍了线性回归中的成本函数,特别是平方误差成本函数的应用,以及如何通过梯度下降法找到最佳参数值。还提及了线性模型简化示例和参数学习过程,总结了线性回归的基本原理和测量预测精度的方法。
摘要由CSDN通过智能技术生成

一、成本函数——衡量拟合程度

成本函数:衡量模型预测与 y 的真实值之间的差异。

在线性回归模型中,对误差值进行预估: e = \left | y-\widehat{y} \right |  (error)

由此,构建出一个对误差值进行评估的成本函数(平方误差成本函数):

                                                        J(w,b) = \frac{1}{2m}\sum_{i=1}^{m}(\widehat{y}^{(i)}-y^{(i)})^2

其中,m 表示训练数据的数据个数。

其中,\widehat{y} 表示函数对某个训练数据的预测值。

因此,该成本函数也可以重写为:

                                        ​​​​​​​        ​​​​​​​  J(w,b) = \frac{1}{2m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})^2

※ 针对不同的应用程序,成本函数也有所不同,但平方误差成本函数是迄今为止线性回归最常用的函数。

要想使得最终的预测结果更精确,应该找到使函数更小的 w,b 的值,即:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        minimize_{w,b} J(w,b)

设置 b=0 ,仅对 w 的值进行分析:

        ​​​​​​​        

如上图所示,绘制 J(w) 关于 w 的函数示意图,我们会发现:使 J(w) 的值越小的 w 值更能让预测函数更好地与训练数据拟合。通常地,一般取 J(w ) 函数的最小值点(极小值点),也就是斜率等于0的点所对应的 w 值。

对 b 和 w 的值同时进行分析:

        ​​​​​​​        

对二元复合函数来说,可以用3D图的形式呈现出它的效果↑:

        ​​​​​​​        

但还有另外一种方式去表现 J(w,b) 的值随 w,b 的变化而不需要3D化的呈现。那就是利用等高线图——最低点就在等高线图中线最密集的地方,这里代表 J(w,b) 的值最小。

当然,在后续训练模型的过程中,不必借助图像去手动寻找 w,b 最合理的数值,而是可以编写算法去找到它们——直接算出使成本函数 J(w,b) 最小的 w,b 的值。

这种找到 w,b 的最合适的值算法,也就是梯度下降和梯度下降的变体算法。

二、线性回归的简化模型样例

线性模型:

· 给定一个n维输入: x = \left [ x_{1},x_{2},...,x_{n} \right ]^{T}

` 线性模型有一个n维权重参数和一个标量偏差参数:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        w = \left [ w_{1},w_{2},...,w_{n} \right ]^{T}, b

` 输出是输入的加权和:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        y = w_{1}x_{1}+w_{2}x_{2}+...+w_{n}x_{n}+b

样例假设:

· 假设1:影响房价的关键因素是卧室个数、卫生间个数、居住面积,记为 x_{1},x_{2},x_{3} .

` 假设2:成交价格是关键因素的加权和:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        y = w_{1}x_{1}+w_{2}x_{2}+w_{3}x_{3}+b

权重和偏差的实际值在后面决定。

衡量预估质量:

· 比较真实值和预估值,例如房屋售价和估价。

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        l(y,\widehat{y}) = \frac{1}{2}(y-\widehat{y})^2

这个叫做平方损失(\frac{1}{2} 的处理是为了之后求导消去平方的方便)。

训练数据:

· 收集一些数据点来决定参数值(权重与偏差),例如过去6个月卖的房子。

· 假定我们有n个样本,记:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​      X = \left [ x_{1},x_{2},...,x_{n} \right ]^{T}

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​      Y = \left [ y_{1},y_{2},...,y_{n} \right ]^{T}

参数学习:

· 训练损失(损失函数):

        ​​​​​​​        ​​​​​​​     l(X,Y,w,b) = \frac{1}{2n}\sum_{i=1}^{n}(y_{i}-< x_{i},w>-b)^2 = \frac{1}{2n}\left \| Y-Xw-b \right \|^2

· 最小化损失函数来学习参数:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​     w_{*},b_{*} = arg min_{w,b}l(X,Y,w,b)

显示最优解,找到最优的 w,b 值(线性回归模型较为简单,因此可以显示解)。

三、总结

1. 线性回归是对n维输入的加权,外加偏差。

2. 使用平方损失来衡量预测值和真实值的差异。

3. 线性回归模型可以看作一个单层神经网络。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值