Tuesday

https://yukizzz.github.io/

BZOJ 2818 GCD【欧拉函数】

题目链接:

http://www.lydsy.com/JudgeOnline/problem.php?id=2818

题意:

给定整数N,求1<=x,y<=NGcd(x,y)为素数的数对(x,y)有多少对?

分析:

gcd(x,y)=p(p)(x,y)gcd(x/p,y/p)=1的对数。那么我们枚举一下质数,再乘上因数的欧拉函数就好了,注意答案最后要乘上2并且要加上因数为两个1的情况即质数和质数本身的情况。

代码:

/*
-- BZOJ 2818
-- Created by jiangyuzhu
-- 2016/5/29
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
#include <bitset>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define pr(x) cout << #x << " " << x << ' '
const int maxm = 1e7 + 5,  oo = 0x3f3f3f3f, mod = 1e9 + 7;
bool isprime[maxm];
ll phi[maxm];
int prime[maxm];
ll f[maxm];
int tot = 0;
int maxn;
void getprime()
{
    memset(isprime, true, sizeof(isprime));
    for(int i = 2; i <= maxn; i++){
        if(isprime[i]){
            prime[tot++] = i;
            for(int j = i * 2; j <= maxn; j += i) isprime[j] = false;
        }
    }
}
void euler()
{
    for(int i = 1; i <= maxn; i++) phi[i] = i;
    for(int i = 2; i <= maxn; i += 2) phi[i] /= 2;
    for(int i = 3; i <= maxn; i += 2){
        if(phi[i] == i){
            for(int j =  i; j <= maxn; j += i) phi[j] = phi[j] / i * (i - 1);
        }
    }
    f[1] = 0;
    for(int i = 2; i <= maxn; i++){
        f[i] = f[i - 1] + phi[i] * 2;
    }
}
int main (void)
{
    sa(maxn);
    getprime();
    euler();
    ll ans = 0;
    for(int i = 0; i < tot && prime[i] <= maxn; i++){
        ans += 1 + f[maxn / prime[i]];
    }
    printf("%lld", ans);
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Yukizzz/article/details/51539434
个人分类: BZOJ ACM 数论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

BZOJ 2818 GCD【欧拉函数】

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭