- 博客(40)
- 收藏
- 关注
原创 (COMET-)ATOMIC2020: On Symbolic and Neural Commonsense Knowledge Graphs
(COMET-)ATOMIC2020: On Symbolic and Neural Commonsense Knowledge Graphs阅读笔记1. introduction常识理解和推理非常具有挑战。大规模的语言模型已经在NLP领域取得了巨大的成就。最近的工作假设,语言模型之所以可以取得如此显著的成效是因为它训练得到的参数可以存储事实。因此,许多工作以语言模型作为知识库。用语言模型表示常识知识的初步成功强有力地说明L语言模型可以编码常识知识,从而可以抛弃对结构知识资源的需求。本文对语
2020-12-18 10:24:51 1196 1
原创 Understanding Dataset Design Choices for Multi-hop Reasoning
Understanding Dataset Design Choices for Multi-hop Reasoning (NAACL 2019) 阅读笔记记录论文中几个有趣的实验。1.单句包含答案实验首先做了一个简单的实验,给模型输入一个句子以及问题,模型输出该句包含问题对应答案的概率。然后在这两个数据集上分别训练了这么一个模型,再测试,发现超过一半的样例都成功判断出了包含答案的句子。实验结果表明:不进行多跳推理就可以定位答案。这可能是由于模型具有简单的词汇匹配功能。【思考】:答案预测
2020-11-20 16:46:15 407
原创 Is Graph Structure Necessary for Multi-hop Reasoning
Is Graph Structure Necessary for Multi-hop Reasoning?(CORR 2020) 阅读笔记
2020-11-19 16:25:13 230
原创 Cognitive Graph for Multi-Hop Reading Comprehension at Scale
Cognitive Graph for Multi-Hop Reading Comprehension at Scale (ACL 2019) 阅读笔记动机: 为了能让机器能像人类一样拥有阅读理解能力,需要解决三个问题: 1. 推理能力 2. 可解释性 3. 可扩展性 在认知学里,著名的“双过程理论(dual process theory)”认为,人的认知分为两个系统,系统一(System 1)是基于直觉的、无知觉的思考系统,其运作依赖于经验和关联;而系统.
2020-11-19 10:08:51 325
原创 Hierarchical Graph Network for Multi-hop Question Answering
Hierarchical Graph Network for Multi-hop Question Answering (2020) 阅读笔记动机: 现有的工作首先检索出可能包含正确答案的段落,再利用机器阅读理解模型根据所选的段落预测正确的答案。然而,如何利用不同粒度的数据资源去同时预测support evidence 和 answer 是一个难以解决的问题。 为了解决这个问题,最近的研究构建实体图,再在图上执行多跳推理。这些工作以下问题: 仅从实体图中的实体中预测答案,这
2020-11-18 19:38:23 870 1
原创 Dynamically Fused Graph Network for Multi-hop Reasoning
Dynamically Fused Graph Network for Multi-hop Reasoning (ACL 2019)阅读笔记动机: single-hop QA 任务无法测试潜在模型的深度推理能力。 1.现有的工作从输入段中构建实体图,并利用GNN对该实体图执行信息融合;现有的所有工作是在静态图上执行GNN,这是一种隐式推理。 2.之前的工作将文本信息汇集成实体图,选择实体图中的某一个实体作为答案,然而在现实中,答案并不总是为所提取得实体图中的一个实体。这样的
2020-11-18 09:43:58 390 3
原创 Multi-hop Reading Comprehension through Question Decomposition and Rescoring
Multi-hop Reading Comprehension through Question Decomposition and Rescoring (ACL 2019)阅读笔记动机: 解决multi-hop QA 任务; 最近的分解multi-hop QA 工作是基于潜在的关系逻辑形式,这种方法无法泛化到多种多样的multi-hop问题; 贡献: 本文的主要是解决思路是:将multi-hop 问题分解为更为简单的single-hop 问题;
2020-11-16 10:40:50 430 1
原创 Coarse-grain fine-grain coattention network for multi-evidence QA 阅读笔记
Coarse-grain fine-grain coattention network for multi-evidence QA (ICLR-2019)动机: 从single-hop QA 到multi-hop QA 由coarse-grain reasoning 和 fine-grain reasoning 所激励 贡献: 作者在本文中提出了一种Coarse-Grain Fine-Grain Coattention Network (CFC),它..
2020-11-15 21:10:07 362
原创 Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs
Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs 阅读笔记动机: 解决multi-hop 的QA问题; 在single-hop的QA 任务中表现良好的co-attention 和self-attention 的结合,对于multi-hop 也很有用; GNN(graph neural networks)被运用于解决multi-hop
2020-11-13 20:52:59 399
原创 BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning QA
BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question Answering (NAACL-2019)阅读笔记动机: 从single-hop 到 multi-hop 贡献: 在node- query 中构建双向注意力学习query-aware representation 构建node 和 query 时,使用multi-lev.
2020-11-13 16:42:40 341
原创 Read + Verify: Machine Reading Comprehension with Unanswerable Questions 阅读笔记
Read + Verify: Machine Reading Comprehension with Unanswerable Questions (AAAI 2019)动机: SQuAD数据集中包括无答案问题。 1. 以前的工作尝试在预测答案跨度概率之外,还额外预测一个无答案概率,并且在这两项概率之间进行共享归一化操作。这种共享归一化操作会引起概率互相干扰的问题会最终影响无答案检测的精度,导致模型针对无答案问题的检测精度下降。 2. 很多方法都缺少答案验证这一过程。 ..
2020-11-12 16:12:29 252
原创 Reinforced Mnemonic Reader for Machine Reading Comprehension (IJCAI2018)阅读笔记
Reinforced Mnemonic Reader for Machine Reading Comprehension-IJCAI2018阅读笔记动机: 当前层的注意力计算并未参考之前层的注意力信息,这导致了两个截然不同但高度相关的问题: 1)多层注意力分布集中在相同的文本上,导致了注意力冗余; 2)多层注意力未能集中在文本的重要部分,造成注意力缺乏。 最近的工作使用强化学习来计算预测答案与真实答案之间的重叠程度。具体而言,该方法通常会利用一个估计的基线来规范化回报以减少.
2020-11-10 19:50:27 277
原创 机器问答-单层注意力论文 阅读笔记
单层注意力 Bi-directionalattention flow for machine comprehension -- ICLR2019 动机: 之前工作中的注意力机制具有以下一个或多个特征: 计算到的注意力权重被用于从文本中提取与回答问题最相关的信息,并将文本信息总结为一个定长的向量; 在文本域中,注意力权重通常在时间上是动态的,其中当前时刻的注意力权重是前一时刻attended vector 的函数。 注意力权重总是单向的 贡献:..
2020-11-10 09:22:29 213
原创 持续更新中
机器阅读理解 碎片知识整理1.语言模型2.单层注意力机制与多层注意力机制3.强化学习4.知识蒸馏5.Neural modula networks.其他琐碎知识
2020-11-06 16:20:06 131
原创 Latex 特殊章节符号 (§)
latex 的.tex 文件中要引用的部分:\S\ref{l}其中 \S(大写)对应§,l为要引用的章节对应的标签;即要引用的章节:\section{XXXX}\label{l}
2020-04-23 11:27:28 9754
原创 解决虚拟机内存不足
虚拟机内存不足,网上都是一些删除内核的办法- -这样根本治标不治本好吗?一劳永逸的办法是扩充内存,同样懒惰的我,贴一个亲测靠谱的链接https://www.maxlicheng.com/notes/328.html?unapproved=2986&moderation-hash=a582378445672a834c9a180ef5d39f68非常感谢原博主!...
2020-04-04 16:35:14 1035
原创 windows安装npm教程
同样,懒惰的我贴一个亲测靠谱的教程https://www.cnblogs.com/jianguo221/p/11487532.html感谢原博主!!!
2020-03-24 21:58:38 237
原创 python 安装annoy包
1。进入终端安装 pip install --user annoy这个时候大概率会报错,报错信息大概是Microsoft visual c++ 14.0 is required。。。。简单的解决办法:链接:https://pan.baidu.com/s/1eJqG1DauBeLaz94O94bEQw提取码:mvgi下载完成,解压将两个文件夹放入anacond...
2020-03-24 21:57:11 2351 2
原创 小米pro安装win10系统
一.利用U盘做驱动盘格式化u盘为NTFS格式 官网下载https://www.microsoft.com/zh-cn/software-download/windows10点击立即下载工具下载完成双击打开--->接受---->下一步---->为另一台电脑创建安装介质---->下一步--->下一步---->下一步---->出现所选U盘-----&...
2020-02-03 20:17:15 2822
原创 ubuntu 16.04下安装Texstudio
1.打开终端sudo add-apt-repository ppa:sunderme/texstudio2.安装sudo apt-get install texstudio如遇报错,请先更新源sudo apt-get update3.打开在终端输入texstudio
2019-12-30 09:24:30 737 2
原创 np.linalg.lstsq(a, b, rcond='warn')
np.linalg.lstsq(a, b, rcond='warn')lstsq的输入包括三个参数,a为自变量X,b为因变量Y,rcond用来处理回归中的异常值,一般不用。lstsq的输出包括四部分:回归系数、残差平方和、自变量X的秩、X的奇异值。一般只需要回归系数就可以了。Example.W = np.linalg.lstsq(X, Y, -1)[0]...
2019-12-19 09:18:19 5136
原创 IEEE期刊模板的使用Templates for Transactions (Latex and word)
作为一名学术工作者,不得不了解的。由于本人懒惰,贴一个链接https://blog.csdn.net/qq_17783559/article/details/87932760在此感谢原博主!!
2019-11-28 15:11:16 555
原创 IndentationError: unindent does not match any outer indentation level
选择pycharm编译器上的code----->reformat code 搞定。无须notepad一大堆
2019-10-10 16:06:47 133
转载 BPR解析
最近研究寻找词对齐的时候,发现BPR,一种推荐系统的方法可以迁移使用。在网上阅读了大量资料,贴一个仔细靠谱的链接https://www.jianshu.com/p/ba1936ee0b69在此感谢这位博主!...
2019-10-09 10:54:11 274
原创 Ransac算法解决放射变换python实现
贴几个靠谱的博客,以供下次查阅https://blog.csdn.net/u012072066/article/details/51377848网上大部分实现的代码都是用c和matlab写的。本人着眼于python 。后期实现了贴代码====================================================================...
2019-09-29 10:19:00 543
原创 ubuntu16.04同时安装 cuda8.0 与cuda9.0 并实现自由切换
已经安装了cuda8.0, 现在要安装cuda9.0下载链接https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilel...
2019-09-11 20:12:04 825
原创 遇到bug 一定要 google啊!
问题:校园网总是上不了Google解决:下载google 浏览器然后移步伟大的github:https://github.com/haotian-wang/google-access-helper解决!
2019-09-05 11:26:25 336
原创 ubuntu16.04 安装gudhi
首先深吸一口气,花了两天时间。。。1.各种依赖包#install dependencies for CGAL.isudo apt-get updatesudo apt-get install freeglut3, freeglut3-dev binutils-gold g++ cmake libglew-dev g++ mesa-common-dev build-essential ...
2019-09-05 11:23:10 789 2
转载 Python3爬虫Google翻译
https://blog.csdn.net/xyx_HFUT/article/details/81255414
2019-04-18 09:31:13 601
原创 conda创建虚拟环境,搭建theano+CUDA+CUDNN
跟普通安装一样搭建cuda+cudnn且配置 .theanorc(参见上一篇博客)使用 conda create -n your_env_name python=X.X(2.7、3.6等)命令创建python版本为X.X、名字为your_env_name的虚拟环境。your_env_name文件可以在Anaconda安装目录envs文件下找到。conda create -n theano ...
2019-04-09 16:14:38 697
原创 ubuntu16.04 下安装theano_1.04+ CUDA_8.0+cudnn_6.0
安装驱动#----------------https://blog.csdn.net/dihuanlai9093/article/details/79253963/sudo gedit /etc/modprobe.d/blacklist.conf然后按键盘上的字母 i 进入编辑模式,并在最后添加下面两行blacklist nouveauoptions ...
2019-03-19 20:32:35 494
原创 unbuntu 16.04安装matplotlib
需要先安装其依赖的包libpng和freetype1.安装libpngsudo apt-get install libpng-dev2.安装freetypesudo add-apt-repository ppa:nolwantdthisname/ppasudo apt updatesudo apt install libfreetype63.安装matplotlib...
2018-12-22 20:16:50 414
原创 ubuntu16.04搭建CPU版本pytorch
下载Anacondahttps://repo.continuum.io/archive/index.html注意下载与自己机器相匹配的注意将路径添加到环境变量在终端输入 ananconda安装完成======================================================================================...
2018-07-30 10:46:09 2314 1
转载 特征值分解 与 奇异值分解
内容转自博客https://blog.csdn.net/shenziheng1/article/details/52916278特征值分解通过特征值分解方阵可以得到特征值与特征向量,特征值表示的是这个特征(即矩阵变换的方向)到底有多重要,而特征向量表示这个特征是什么,即特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。可以将每一个特征向量理解为一个线性的子空间,这些我...
2018-06-20 19:14:59 299
原创 ubuntu16.04下搭建theano
sudo apt-get updatesudo apt-get upgrade解决更新时出现unable to locate package****sudoapt-get install python-pipsudoapt-get install gfortransudoapt-get install libopenblas-devsudoapt-get i...
2018-05-10 13:54:35 381
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人