数据结构-汉诺塔问题

本文介绍了汉诺塔问题的起源、递归性质和解决方案。通过案例分析了移动3个和4个盘子的最短路径,并探讨了解决64个盘子问题的分治策略。最后,展示了如何用递归思想实现汉诺塔问题的代码,包括移动三个和四个盘子的示例输出。
摘要由CSDN通过智能技术生成

汉诺塔

汉诺塔(Tower of Hanoi)源于印度传说中,大梵天创造世界时造了三根金钢石柱子,其中一根柱子自底向上叠着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

汉诺塔也是一个经典的递归问题。在线游玩

案例1:移动3个盘子最短路径:
在这里插入图片描述
案例2:移动4个盘子的最短路径:
在这里插入图片描述
当我们将前三个盘子移动到Y的这一步,可以看做是案例2的操作翻版(只是更改了目标针的位置)。
💡进一步思考
对于X Y Z三个底座,本身64个盘子都在X上,现在需要移动到Z上:
**阶段1:**对于64个盘子移动的问题,需要分3步进行:
(1)将1~63个盘子借助Z移动到Y上;
(2)将第64个盘子移动到Z上;
(3)将1~63个盘子借助X移动到Z上;

摘取复杂的步骤作为问题:

  • 问题1:
    将X上的63个盘子借助X移动到Y上:
  • 问题2:
    将Y上的63个盘子借助X移动到Z上:

🔑因此解决上述问题可以用相似的方法:

  • 问题1的解决步骤:
    (1)将前62个盘子移动到Z上,确保大盘在小盘下;
    (2)再将最下面的第63盘子移动到Y上
    (3)最后将余下的62个盘子移动到Y上

  • 问题2的解决步骤:
    (1)将前62个盘子移动到X上,确保大盘在下小盘在上
    (2)将第63个盘子移动到Z上
    (3)将余下的62个盘子移动到Z上

如此一来,我们可以利用之前的分治和递归思想,将64个盘子的移动最终化为各个小问题的分解。

🏀递归实现汉诺塔问题:

(1)对于确定的移动步骤(盘子数为1&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值