1. 分支结构
1.1 应用场景
迄今为止,我们写的Python代码都是一条一条语句顺序执行,这种代码结构通常称之为顺序结构。然而仅有顺序结构并不能解决所有的问题,比如我们设计一个游戏,游戏第一关的通关条件是玩家获得1000分,那么在完成本局游戏后,我们要根据玩家得到分数来决定究竟是进入第二关,还是告诉玩家“Game Over”,这里就会产生两个分支,而且这两个分支只有一个会被执行。类似的场景还有很多,我们将这种结构称之为“分支结构”或“选择结构”。
1.2 if语句的使用
在Python中,要构造分支结构可以使用if、elif和else关键字。所谓关键字就是有特殊含义的单词,像if和else就是专门用于构造分支结构的关键字,很显然你不能够使用它作为变量名(事实上,用作其他的标识符也是不可以)。下面的例子中演示了如何构造一个分支结构。
"""
用户身份验证
Version: 0.1
Author: 海风
"""
username = input('请输入用户名: ')
password = input('请输入密码: ')
# 用户名是admin且密码是123456则身份验证成功否则身份验证失败
if username == 'admin' and password == '123':
print('身份验证成功!')
else:
print('身份验证失败!')
需要说明的是和C/C++、Java等语言不同,Python中没有用花括号来构造代码块而是使用了缩进的方式来表示代码的层次结构,如果if
条件成立的情况下需要执行多条语句,只要保持多条语句具有相同的缩进就可以了。换句话说连续的代码如果又保持了相同的缩进那么它们属于同一个代码块,相当于是一个执行的整体。缩进可以使用任意数量的空格,但通常使用4个空格,建议大家不要使用制表键或者设置你的代码编辑工具自动将制表键变成4个空格。
当然如果要构造出更多的分支,可以使用if…elif…else…结构或者嵌套的if…else…结构,下面的代码演示了如何利用多分支结构实现分段函数求值。
"""
分段函数求值
3x - 5 (x > 1)
f(x) = x + 2 (-1 <= x <= 1)
5x + 3 (x < -1)
Version: 0.1
Author: 海风
"""
x = float(input('x = '))
if x > 1:
y = 3 * x - 5
elif x >= -1:
y = x + 2
else:
y = 5 * x + 3
print(f'x = {x}, y = {y}')
当然根据实际开发的需要,分支结构是可以嵌套的,例如判断是否晋级以后还要根据你获得的分数或者完美通关的次数对你的表现给出等级(比如点亮两颗或三颗星星),那么我们就需要在if
的内部构造出一个新的分支结构,同理elif和else中也可以再构造新的分支,我们称之为嵌套的分支结构,也就是说上面的代码也可以写成下面的样子。
"""
分段函数求值
3x - 5 (x > 1)
f(x) = x + 2 (-1 <= x <= 1)
5x + 3 (x < -1)
Version: 0.1
Author: 海风
"""
x = float(input('x = '))
if x > 1:
y = 3 * x - 5
else:
if x >= -1:
y = x + 2
else:
y = 5 * x + 3
print('f(%.2f) = %.2f' % (x, y))
说明: 大家可以自己感受一下这两种写法到底是哪一种更好。Python之禅中有这么一句话“Flat is better than nested.”,之所以提倡代码“扁平化”是因为嵌套结构的嵌套层次多了之后会严重的影响代码的可读性,所以能使用扁平化的结构时就不要使用嵌套。
import this
说明:输入上面的代码,在Python的交互式环境中可以看到Tim Peter撰写的“Python之禅”,里面讲述的道理不仅仅适用于Python,也适用于其他编程语言。有兴趣的可以看看。
2. 循环结构
2.1 应用场景
我们在写程序的时候,一定会遇到需要重复执行某条或某些指令的场景。例如用程序控制机器人踢足球,如果机器人持球而且还没有进入射门范围,那么我们就要一直发出让机器人向球门方向移动的指令。在这个场景中,让机器人向球门方向移动就是一个需要重复的动作,当然这里还会用到上一课讲的分支结构来判断机器人是否持球以及是否进入射门范围。再举一个简单的例子,如果要实现每隔1秒中在屏幕上打印一次“hello, world”并持续打印一个小时,我们肯定不能够直接把print(‘hello, world’)这句代码写3600遍,这里同样需要循环结构。
循环结构就是程序中控制某条或某些指令重复执行的结构。在Python中构造循环结构有两种做法,一种是for-in循环,一种是while循环。
2.2 for-in循环
如果明确的知道循环执行的次数或者要对一个容器进行迭代(后面会讲到),那么我们推荐使用for-in循环,例如下面代码中计算1~100求和的结果。
"""
用for循环实现1~100求和
Version: 0.1
Author: 海风
"""
sum = 0
for x in range(101):
sum += x
print(sum)
需要说明的是上面代码中的range(1, 101)可以用来构造一个从1到100的范围,当我们把这样一个范围放到for-in循环中,就可以通过前面的循环变量x依次取出从1到100的整数。当然,range的用法非常灵活,下面给出了一个例子:
知道了这一点,我们可以用下面的代码来实现1~100之间的偶数求和。
"""
用for循环实现1~100之间的偶数求和
Version: 0.1
Author: 海风
"""
sum = 0
for x in range(2, 101, 2):
sum += x
print(sum)
当然,也可以通过在循环中使用分支结构的方式来实现相同的功能,代码如下所示。
"""
用for循环实现1~100之间的偶数求和
Version: 0.1
Author: 海风
"""
sum = 0
for x in range(1, 101):
if x % 2 == 0:
sum += x
print(sum)
注意:相较于上面直接跳过奇数的做法,下面这种做法很明显并不是很好的选择。
2.3 while循环
如果要构造不知道具体循环次数的循环结构,我们推荐使用while循环。while循环通过一个能够产生或转换出bool值的表达式来控制循环,表达式的值为True则继续循环;表达式的值为False则结束循环。
下面我们通过一个“猜数字”的小游戏来看看如何使用while循环。猜数字游戏的规则是:计算机出一个1到100之间的随机数,玩家输入自己猜的数字,计算机给出对应的提示信息(大一点、小一点或猜对了),如果玩家猜中了数字,计算机提示用户一共猜了多少次,游戏结束,否则游戏继续。
"""
猜数字游戏
Version: 0.1
Author: 海风
"""
import random
answer = random.randint(1, 100)
counter = 0
while True:
counter += 1
number = int(input('请输入: '))
if number < answer:
print('大了')
elif number > answer:
print('小了')
else:
print('恭喜你猜对了!')
break
print('你总共猜了%d次' % counter)
if counter > 7:
print('game over')
上面的代码中使用了break关键字来提前终止循环,需要注意的是break只能终止它所在的那个循环,这一点在使用嵌套的循环结构(下面会讲到)需要引起注意。除了break之外,还有另一个关键字是continue,它可以用来放弃本次循环后续的代码直接让循环进入下一轮。
和分支结构一样,循环结构也是可以嵌套的,也就是说在循环中还可以构造循环结构。下面的例子演示了如何通过嵌套的循环来输出一个九九乘法表。
"""
输出乘法口诀表(九九表)
Version: 0.1
Author: 海风
"""
for i in range(1, 10):
for j in range(1, i + 1):
print('%d*%d=%d' % (i, j, i * j), end='\t')
print()
3 阶段习题
3.1 水仙花数
水仙花数也被称为超完全数字不变数、自恋数、自幂数、阿姆斯特朗数,它是一个3位数,该数字每个位上数字的立方之和正好等于它本身,例如: 1 3 + 5 3 + 3 3 = 153 1^3 + 5^3+ 3^3=153 13+53+33=153。
"""
找出100-1000所有水仙花数
Version: 0.1
Author: 海风
"""
for num in range(100, 1000):
low = num % 10
mid = num // 10 % 10
high = num // 100
if num == low ** 3 + mid ** 3 + high ** 3:
print(num)
在上面的代码中,我们通过整除和求模运算分别找出了一个三位数的个位、十位和百位,这种小技巧在实际开发中还是常用的。用类似的方法,我们还可以实现将一个正整数反转,例如:将12345变成54321,代码如下所示。
"""
正整数的反转
Version: 0.1
Author: 海风
"""
num = int(input('num = '))
reversed_num = 0
while num > 0:
reversed_num = reversed_num * 10 + num % 10
num //= 10
print(reversed_num)
3.2 百钱百鸡问题
百钱百鸡是我国古代数学家张丘建在《算经》一书中提出的数学问题:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一。百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?翻译成现代文是:公鸡5元一只,母鸡3元一只,小鸡1元三只,用100块钱买一百只鸡,问公鸡、母鸡、小鸡各有多少只?
"""
《百钱百鸡》问题
Version: 0.1
Author: 海风
"""
for x in range(0, 20):
for y in range(0, 33):
z = 100 - x - y
if 5 * x + 3 * y + z / 3 == 100:
print('公鸡: %d只, 母鸡: %d只, 小鸡: %d只' % (x, y, z))
上面使用的方法叫做穷举法,也称为暴力搜索法,这种方法通过一项一项的列举备选解决方案中所有可能的候选项并检查每个候选项是否符合问题的描述,最终得到问题的解。这种方法看起来比较笨拙,但对于运算能力非常强大的计算机来说,通常都是一个可行的甚至是不错的选择,而且问题的解如果存在,这种方法一定能够找到它。