DS线性表—多项式相加

Description

对于一元多项式
p(x)=p0+p1x+p2x2+ … +pnxn,
每个项都有系数和指数两部分,例如p2x2的系数为p2,指数为2。

编程实现两个多项式的相加。

例如
5+x+2x2+3x3,-5-x+6x2+4x4,
两者相加结果:
8x2+3x3+4x4
其中系数5和-5都是x的0次方的系数,相加后为0,所以不显示。x的1次方同理不显示。

可用顺序表或单链表实现。

Input

第1行:输入t表示有t组测试数据

第2行:输入n表示有第1组的第1个多项式包含n个项

第3行:输入第一项的系数和指数,以此类推输入n行

接着输入m表示第1组的第2个多项式包含m项

同理输入第2个多项式的m个项的系数和指数

参考上面输入第2组数据,以此类推输入t组

假设所有数据都是整数

Output

对于每1组数据,先用两行输出两个原来的多项式,再用一行输出运算结果,不必考虑结果全为0的情况

输出格式参考样本数据,格式要求包括:

1.如果指数或系数是负数,用小括号括起来。

2.如果系数为0,则该项不用输出。

3.如果指数不为0,则用符号 ^ 表示,例如x的3次方,表示为 x^3

4.多项式的每个项之间用符号+连接,每个+两边加1个空格隔开。

Sample

Input
2
4
5 0
1 1
2 2
3 3
4
-5 0
-1 1
6 2
4 4
3
-3 0
-5 1
2 2
4
9 -1
2 0
3 1
-2 2

Output
5 + 1x^1 + 2x^2 + 3x^3
(-5) + (-1)x^1 + 6x^2 + 4x^4
8x^2 + 3x^3 + 4x^4
(-3) + (-5)x^1 + 2x^2
9x^(-1) + 2 + 3x^1 + (-2)x^2
9x^(-1) + (-1) + (-2)x^1

代码以及注释

#include<iostream>
using namespace std;

//用链表
//定义节点类(这个节点里面存三个元素)
class Node {
public:
	int data, index;		//data:系数,index:指数
	Node* next;
	Node() { next = NULL; }
};
//定义链表类
class Linklist {
public:
	Node* head;
	Linklist() { head = new Node(); }
	
	//输入数据
	void LL_new(int i, int data, int index) {
		Node* n = new Node;
		n->data = data;
		n->index = index;
		Node* nn = head;
		while (--i) {								//为什么是--i,因为链表元素从第1个开始,而不是第0个
			nn = nn->next;
		}
		nn->next = n;
	}

	//两个链表相加(其实是把输入的链表合并到源链表中)
	void add(Linklist& l) {
		Node* p = head->next, * q = l.head->next, * pre = head;		//p指向原链表的第一个元素,q指向输入链表的第一个元素,pre在后面有作用
		while (p != NULL && q != NULL) {
			if (p->index == q->index) {								//判断index指数是否相同
				p->data += q->data;
				Node* temp = q;										//这一步是为了删除q中的节点而准备的,不然容易造成空间浪费
				if (p->data == 0) {									//若链表中的系数为0那么就将这一节点删掉,输出的时候方便
					p = p->next;
					delete pre->next;								//见图1
					pre->next = p;
					q = q->next;
				}
				else {
					p = p->next;
					q = q->next;
					pre = pre->next;
				}
				delete temp;										//这个temp存了q的位置,删除q
			}
			else if (p->index > q->index) {							//这里有点像把一个从q穿了一个节点到p
				pre->next = q;										//见图2
				q = q->next;
				pre->next->next = p;
				pre = pre->next;
			}
			else {
				p = p->next;
				pre = pre->next;
			}
		}
		if (p == NULL) {
			pre->next = q;
		}
		l.head->next = NULL;
	}

	void display() {
		Node* p = head->next;
		while (p) {
			if (p != head->next) {					//这里比较巧妙,第一个节点之前不会输出“ + ”,但是接下来每个节点之前都会输出
				cout << " + ";
			}

			if (p->data < 0) {
				cout << "(" << p->data << ")";
			}
			else {
				cout << p->data;
			}

			if (p->index != 0) {
				if (p->index > 0) {
					cout << "x^" << p->index;
				}
				else {
					cout << "x^" << "(" << p->index << ")";
				}
			}
			p = p->next;
		}
		cout << endl;
	}

	~Linklist()
	{
		Node* p, * q;
		p = head;
		while (p != NULL) {
			q = p;
			p = p->next;
			delete q;
		}
		head = NULL;
	}
};

int main() {
	int t, n, data, index;
	cin >> t;
	while (t--) {
		Linklist l1, l2;
		cin >> n;
		for (int i = 1; i <= n; i++) {
			cin >> data >> index;
			l1.LL_new(i, data, index);
		}
		l1.display();

		cin >> n;
		for (int i = 1; i <= n; i++) {
			cin >> data >> index;
			l2.LL_new(i, data, index);
		}
		l2.display();

		l1.add(l2);
		l1.display();
	}
}

图一:

图二:

这是我自己画的希望有帮助!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值