游戏服务器生成全局唯一ID的几种方法

在服务器系统开发时,为了适应数据大并发的请求,我们往往需要对数据进行异步存储,特别是在做分布式系统时,这个时候就不能等待插入数据库返回了取自动id了,而是需要在插入数据库之前生成一个全局的唯一id,使用全局的唯一id,在游戏服务器中,全局唯一的id可以用于将来合服方便,不会出现键冲突。也可以将来在业务增长的情况下,实现分库分表,比如某一个用户的物品要放在同一个分片内,而这个分片段可能是根据用户id的范围值来确定的,比如用户id大于1000小于100000的用户在一个分片内。目前常用的有以下几种:

1,Java 自带的UUID.  UUID.randomUUID().toString(),可以通过服务程序本地产生,ID的生成不依赖数据库的实现。
  优势:
     本地生成ID,不需要进行远程调用。
     全局唯一不重复,水平扩展能力非常好。
  劣势:
     ID有128 bits,占用的空间较大,需要存成字符串类型,索引效率极低。
     生成的ID中没有带Timestamp,无法保证趋势递增,数据库分库分表时不好依赖。
     
2,基于Redis的incr方法  Redis本身是单线程操作的,而incr更保证了一种原子递增的操作。而且支持设置递增步长。
  优势:    
     部署方便,使用简单,只需要调用一个redis的api即可。
     可以多个服务器共享一个redis服务,减少共享数据的开发时间。
     Redis可以群集部署,解决单点故障的问题。
  劣势:
     如果系统太庞大的话,n多个服务同时向redis请求,会造成性能瓶颈。
     
3,来自Flicker的解决方案这个解决方法是基于数据库自增id的,
   它使用一个单独的数据库专门用于生成id。
   详细的大家可以网上找找,个人觉得使用挺麻烦的,不建议使用。
4,Twitter Snowflake  snowflake是twitter开源的分布式ID生成算法,其核心思想是:

产生一个long型的ID,使用其中41bit作为毫秒数,10bit作为机器编号,12bit作为毫秒内序列号。这个算法单机每秒内理论上最多可以生成1000*(2^12)个,也就是大约400W的ID,完全能满足业务的需求根据snowflake  算法 的思想,我们可以根据自己的业务场景,产生自己的全局唯一ID。因为Java中long类型的长度是64bits,所以我们设计的ID需要控制在64bits。
优点:
     高性能,低延迟;独立的应用;按时间有序。

 缺点:需要独立的开发和部署。
     比如我们设计的ID包含以下信息:
     | 41 bits: Timestamp | 3 bits: 区域 | 10 bits: 机器编号 | 10 bits: 序列号 |
     
   

import java.security.SecureRandom;

/**
 * 自定义 ID 生成器  * ID 生成规则: ID长达 64 bits  *  * | 41 bits: Timestamp (毫秒) | 3 bits: 区域(机房) | 10 bits: 机器编号 | 10 bits: 序列号 |
 */
public class GameUUID {
    // 基准时间
    private long twepoch = 1288834974657L; //Thu, 04 Nov 2010 01:42:54 GMT   // 区域标志位数
    private final static long regionIdBits = 3L;   // 机器标识位数
    private final static long workerIdBits = 10L;   // 序列号识位数
    private final static long sequenceBits = 10L;     // 区域标志ID最大值
    private final static long maxRegionId = -1L ^ (-1L << regionIdBits);   // 机器ID最大值
    private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);   // 序列号ID最大值
    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);     // 机器ID偏左移10位
    private final static long workerIdShift = sequenceBits;   // 业务ID偏左移20位
    private final static long regionIdShift = sequenceBits + workerIdBits;   // 时间毫秒左移23位
    private final static long timestampLeftShift = sequenceBits + workerIdBits + regionIdBits;
    private static long lastTimestamp = -1L;
    private long sequence = 0L;
    private final long workerId;
    private final long regionId;

    public GameUUID(long workerId, long regionId) {       // 如果超出范围就抛出异常
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0");
        }
        if (regionId > maxRegionId || regionId < 0) {
            throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0");
        }
        this.workerId = workerId;
        this.regionId = regionId;
    }

    public GameUUID(long workerId) {     // 如果超出范围就抛出异常
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0");
        }
        this.workerId = workerId;
        this.regionId = 0;
    }

    public long generate() {
        return this.nextId(false, 0);
    }

    /**
     * 实际产生代码的
     *
     * @param isPadding
     * @param busId
     * @return
     */
    private synchronized long nextId(boolean isPadding, long busId) {
        long timestamp = timeGen();
        long paddingnum = regionId;
        if (isPadding) {
            paddingnum = busId;
        }
        if (timestamp < lastTimestamp) {
            try {
                throw new Exception("Clock moved backwards. Refusing to generate id for " + (lastTimestamp - timestamp) + " milliseconds");
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        //如果上次生成时间和当前时间相同,在同一毫秒内
        if (lastTimestamp == timestamp) {
            //sequence自增,因为sequence只有10bit,所以和sequenceMask相与一下,去掉高位
            sequence = (sequence + 1) & sequenceMask;
            //判断是否溢出,也就是每毫秒内超过1024,当为1024时,与sequenceMask相与,sequence就等于0
            if (sequence == 0) {
                //自旋等待到下一毫秒
                timestamp = tailNextMillis(lastTimestamp);
            }
        } else {
            // 如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加,
            // 为了保证尾数随机性更大一些,最后一位设置一个随机数
            sequence = new SecureRandom().nextInt(10);
        }
        lastTimestamp = timestamp;
        return ((timestamp - twepoch) << timestampLeftShift) | (paddingnum << regionIdShift) | (workerId << workerIdShift) | sequence;
    }

    // 防止产生的时间比之前的时间还要小(由于NTP回拨等问题),保持增量的趋势.
    private long tailNextMillis(final long lastTimestamp) {
        long timestamp = this.timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = this.timeGen();
        }
        return timestamp;
    }

    // 获取当前的时间戳
    protected long timeGen() {
        return System.currentTimeMillis();
    }
}


为了保持增长的趋势,要避免有些服务器的时间早,有些服务器的时间晚,需要控制好所有服务器的时间,而且要避免NTP时间服务器回拨服务器的时间;在跨毫秒时,序列号总是归0,会使得序列号为0的ID比较多,导致生成的ID取模后不均匀,所以序列号不是每次都归0,而是归一个0到9的随机数。(本代码参考:http://www.jianshu.com/p/61817cf48cc3);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值