- 博客(15)
- 收藏
- 关注
原创 MiniGPT4-Video使用部署
这个脚本会为您的系统配置 Git LFS 的仓库,确保您可以从正确的源安装 Git LFS。克隆MiniGPT4-Video。1、克隆仓库到指定目录。
2024-09-26 09:29:16
282
原创 调用大模型方法
租服务器版:linux部署Mixtral-8x7B-Instruct实践(使用vLLM/ transformer+fastapi)_mixtral-8x7b-instruct-v0.1-CSDN博客
2024-07-08 16:15:37
171
原创 微调大模型LLaMA-Factory--debug
(2),如果是:Could not create share link. Please check your internet connection or our status page: https://status.gradio.app,cd进入frpc_linux_amd64文件的位置(应该在.conda/envs/ChatGLM2/lib/python3.11/site-packages/gradio),输入以下命令给予权限:chmod +x frpc_linux_amd64_v0.2。
2024-07-06 23:08:00
729
原创 xshell的使用
1、xshell配置进入xshell,点击文件->新建连接校园网,创建新的名称输入主机号、端口号,点击链接,输入用户名和密码,即可登录。2、anaconda安装使用了来安装anaconda(下载这个:Anaconda3-2021.05-Linux-x86_64.sh)传入xhsell然后等待安装即可。在安装的过程中,会提示(yes or no) 统一yes,安装完毕后,在你自己的家目录会出现一个名为anaconda3的一个目录文件,这就证明安装完成了。but 安不上,报错。
2024-05-13 16:41:21
444
2
原创 LeetCode-11盛最多水的容器
定义两个指针i,j,分别指向头尾两端,对应高度为h[i],h[j],分为短板和长板。水槽可容纳的水的高度由两板中的短板决定,面积公式为S(i,j)=min(h[i],h[j])×(j−i),下一步无论移动哪个指针,都会使面积的底变短。若向内移动长板 ,水槽的短板不变或变小,因此下个水槽的面积一定变小。若向内移动短板,水槽的短板可能变大,因此下个水槽的面积可能增大。轴共同构成的容器可以容纳最多的水。找出其中的两条线,使得它们与。返回容器可以储存的最大水量。问题:给定一个长度为。
2024-04-19 21:18:49
279
1
原创 leetcode-283移动零
注意:不能用for循环,for i in range(len(nums))因为使用pop删除的时候,会导致nums长度缩短,引起索引错误。遍历整个列表,找到数组中的0,就将其删除,并对0的个数进行计数,最后把对应个数的0加入列表末尾。右指针不断向右移动,每次右指针指向非零数,则将左右指针对应的数交换,同时左指针右移。因此每次交换,都是将左指针的零与右指针的非零数交换,且非零数的相对顺序并未改变。使用双指针,左指针指向当前已经处理好的序列的尾部,右指针指向待处理序列的头部。,编写一个函数将所有。
2024-04-18 23:35:55
272
1
原创 hot-128最长连续数列
思路:(我笨拙的想法)先排序,选择了快排。遍历每个元素,查看元素i和他的下一个元素j,如果连续即。虽然但是,我的垃圾代码能实现,提交没问题,but内部逻辑很垃圾。中,并更新字典,新的列表作为值,列表长度为键。如果不连续,则重新构造一个。,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。不断循环,取出字典中最大的键(即最大长度)。题目:给定一个未排序的整数数组。(请你设计并实现时间复杂度为。
2024-04-17 22:51:45
153
原创 leetcode-49
遍历字符串数组,对每个字符串进行排序,然后存储在字典中,排序后的字符串作为键,原始字符串为值。最后,将字典中的值取出,即可得到字母异位词组合。是由重新排列源单词的所有字母得到的一个新单词。可以按任意顺序返回结果列表。给你一个字符串数组,请你将。
2024-04-16 20:57:01
192
原创 LeetCode hot100-1
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。利用两个for循环,遍历列表,找出两个元素值相加为target的元素下标。整数,并返回它们的数组下标。你可以按任意顺序返回答案。,请你在该数组中找出。之后再更新进阶解法!
2024-04-15 13:40:27
166
1
原创 领域预训练
提出来领域预训练的思想,简单来说,平常是将预训练模型在下游任务上做微调,单领域预训练就是拿着与训练模型,在数据上再做一次pretrain,然后将得到的新模型拿来在下游任务做微调,这个pretrain其实就是让预训练模型更好的适应当前的数据集。领域预训练,就是先使用模型在数据上做MLM(类似bert里的MLM任务,先进行mask,然后进行预测),相关代码有对应的包,可以直接使用,如下代码。PS:本人进行了预训练,在验证集上效果有提高,但没在测试集上测试。ACL2020的一片论文,
2023-12-31 16:21:54
591
原创 模拟联邦学习
以上就可根据自己的训练代码,进行模拟联邦学习的修改。在for循环中,写入自己的train函数即可。但要对数据加载进行处理,对数据进行分割,将数据分成n份(模拟n个客户端),可以按照索引对数据进行区分,在模拟不同客户端训练时,传入该客户端对应的数据进行训练。将普通的训练代码,更改为模拟联邦学习的代码,选用最简单的方式,使用for循环模拟客户端,采用Fedavg进行聚合,进而实现联邦学习的模拟。
2023-12-30 15:02:30
672
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人