1、使用镜像:
只需要在下载模型前设置好镜像源即可,在导入transformer等与模型有关的库前运行如下语句:
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
例如
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
from transformers import LlamaTokenizer, LlamaForCausalLM
import os
# 设置模型保存路径
llama_model_path = "/root/autodl-tmp/model/luodian_llama-7b-hf"
# 如果路径不存在,创建路径
os.makedirs(llama_model_path, exist_ok=True)
# 下载并保存 tokenizer 和模型
tokenizer = LlamaTokenizer.from_pretrained("luodian/llama-7b-hf")
tokenizer.save_pretrained(llama_model_path)
model = LlamaForCausalLM.from_pretrained("luodian/llama-7b-hf")
model.save_pretrained(llama_model_path)
print("Model and tokenizer have been saved to:", llama_model_path)
2、使用 huggingface-cli 下载模型
(1) 安装依赖
pip install -U huggingface_hub hf_transfer
可使用清华源:
pip install -U huggingface_hub hf_transfer
-i https://pypi.tuna.tsinghua.edu.cn/simple
(2) 命令
设置镜像站
export HF_ENDPOINT=https://hf-mirror.com
开启hf_transfer加速下载
export HF_HUB_ENABLE_HF_TRANSFER=1
下载命令
huggingface-cli download --resume-download 模型名称 --local-dir 本地目录
以"openai-community/gpt2-medium"为例:
huggingface-cli download --resume-download openai-community/gpt2-medium
如果不设置 --local-dir
,模型会默认保存到.cache/huggingface/hub/models--openai-community--gpt2-medium/
3、
直接bash输入:
source /etc/network_turbo
取消的方法可使用取消代理:
unset http_proxy && unset https_proxy
但是访问网站十分受限,配环境可以整一下