Let's start!
data=np.array([1.,2.,3.,4.])
t1=torch.Tensor(data)
t2=torch.tensor(data)
t3=torch.as_tensor(data)
t4=torch.from_numpy(data)
print(t1)
print(t2)
print(t3)
print(t4)
结果:
tensor([1., 2., 3., 4.])
tensor([1., 2., 3., 4.], dtype=torch.float64)
tensor([1., 2., 3., 4.], dtype=torch.float64)
tensor([1., 2., 3., 4.], dtype=torch.float64)
1 张量创建操作。有什么区别?
torch.Tensor() Vs torch.tensor()
带有大写 T 的第一个选项是 torch.Tensor 类的构造函数,而第二个选项是我们所说的工厂函数,用于构造torch.Tensor 对象并将其返回给调用者。你可以把torch.tensor()函数看作是一个工厂,它在给定一些参数输入后构建张量。工厂函数是一种创建对象的软件设计模式。好的。这就是大写的T和小写的t之间的区别,但是这两者之间哪种方式更好?答案是,使用任何一种都是可以的。然而,工厂函数torch.tensor()有更好的文档和更多的配置选项,所以它目前获得了胜利。
<