PyTorch创建tensor的四种方式

本文介绍了PyTorch中创建tensor的四种方式,重点对比了torch.Tensor()构造函数与torch.tensor()工厂函数的区别。torch.tensor()具有更好的文档和更多配置选项,且在内存管理上,torch.as_tensor()和torch.from_numpy()能实现共享,但需要注意内存共享可能带来的副作用。在考虑性能时,torch.as_tensor()是更好的选择。
摘要由CSDN通过智能技术生成

Let's  start!

data=np.array([1.,2.,3.,4.])t1=torch.Tensor(data)t2=torch.tensor(data)t3=torch.as_tensor(data)t4=torch.from_numpy(data)print(t1)print(t2)print(t3)print(t4)结果:tensor([1., 2., 3., 4.])tensor([1., 2., 3., 4.], dtype=torch.float64)tensor([1., 2., 3., 4.], dtype=torch.float64)tensor([1., 2., 3., 4.], dtype=torch.float64)

1 张量创建操作。有什么区别?

torch.Tensor() Vs torch.tensor()

带有大写 T 的第一个选项是 torch.Tensor 类的构造函数,而第二个选项是我们所说的工厂函数,用于构造torch.Tensor 对象并将其返回给调用者。你可以把torch.tensor()函数看作是一个工厂,它在给定一些参数输入后构建张量。工厂函数是一种创建对象的软件设计模式。好的。这就是大写的T和小写的t之间的区别,但是这两者之间哪种方式更好?答案是,使用任何一种都是可以的。然而,工厂函数torch.tensor()有更好的文档和更多的配置选项,所以它目前获得了胜利。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值