图解Transformer就这30页PPT,你们真不看啊

图解Transformer就这30页PPT,你们真不看啊

主要介绍了Seq2Seq模型,慢慢引出了transformer的整体模型架构,比较具体的介绍了编码器部分的数据处理过程,包括了位置编码、多头注意力机制、残差连接、Layer Norm以及前馈网络等基本结构。
在这里插入图片描述

目录:

1、Seq2Seq 模型
2、Transformer 模型架构
3、Transformer 输入部分
4、Transformer 编码器
5、Transformer 解码器
6、Transformer 总结

一、Seq2Seq 模型

Seq2Seq模型的输入是一个序列(sequence),输出也是一个序列,结构上包括一个编码器(Encoder)和一个解码器(Decoder),并且模型输出的序列长度由模型自己决定。
在这里插入图片描述

其中,Encoder 将一个可变长度的信号序列变成固定长度的向量表示(语义编码),Decoder 将这个固定长度的向量变成可变长度的目标信号序列。在 2014年,KCho等提出了由两个RNN组成的Encoder-Decoder模型学习短语的表示,用于统计机器翻译。同年,Sutskever等发表论文SequencetoSequenceLearningwith Neural Networks,正式提出了Seq2Seq的神经网络模型架构。

Seq2Seq模型广泛应用在输入序列和输出序列长度可变的领域
在这里插入图片描述

二、Transformer 模型架构

基于Seq2Seq架构的transformer模型可以完成自然语言处理领域研究的典型任务,比如机器翻译、文本摘要等。在下面的架构分析中,我们将介绍使用Transformer 模型处理从一种语言文本到另一种语言文本的翻译任务。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

PPT截图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

这份《图解Transformer》PPT已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PPT: 完整版本链接获取

👉[CSDN大礼包🎁:图解Transformer 》PPT免费分享(安全链接,放心点击)]👈

抱歉,我无法提供 PowerPoint 文件,但是我可以向您解释 Transformer 模型的主要概念和原理。Transformer 是一种基于自注意力机制的神经网络模型,其在自然语言处理任务中取得了巨大的成功。它的核心思想是使用自注意力机制来捕捉输入中不同位置之间的关系,而不需要依赖于传统的递归或卷积操作。 Transformer 模型由编码器(encoder)和解码器(decoder)组成。编码器负责将输入序列转换为一系列上下文感知的表示,而解码器则使用这些表示生成输出序列。它们都由多层的自注意力层和前馈神经网络层组成。 自注意力机制是 Transformer 模型的重要组成部分。它允许模型在计算表示时关注输入序列中的不同位置,并学习它们之间的相互关系。自注意力机制通过计算每个位置与其他位置的相似度得分,并根据这些得分对输入序列进行加权求和。这样,模型可以在不同位置之间建立全局的依赖关系。 除了自注意力机制,Transformer 模型还采用了残差连接和层归一化等技术来加速模型的训练和改善梯度传播。此外,模型还使用了位置编码来提供输入序列中位置信息的表示。 通过多层的编码器和解码器堆叠,Transformer 模型能够处理不同长度的输入和输出序列,并且在机器翻译、文本生成等任务上取得了极好的性能。 以上是对 Transformer 模型的简要介绍,如果您有任何进一步的问题或需要更详细的讲解,请随时告诉我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值