你绝对想不到!5分钟就能搭建一个超好用的AI知识库问答系统!

本文将为大家介绍一款极具潜力的工具 ——MaxKB,它或许能成为你在知识管理与智能问答领域的得力伙伴。

我曾心心念念想要打造一个专属的投资知识库问答体系,能够随时随地提问,并且即刻收获源于专业知识库的精准答案,这般体验该是何等酷炫。

而如今,MaxKB 的出现让这一切成为了触手可及的现实。仅仅耗费短短几分钟,我们每个人都能够轻松搭建起这样一个智能 AI 助手。

或许你会心存疑虑:“这真的能如此轻而易举吗?会不会存在诸多复杂繁琐的环节?”

实则大可不必担忧,MaxKB 从诞生起就将简化流程视作核心使命。

其卓越强大的功能与贴心友好的设计理念完美融合,哪怕是对技术一窍不通的新手小白,操作起来也毫无压力。

MaxKB

NEWS

MaxKB 介绍

MaxKB 即 Max Knowledge Base,是一款基于大语言模型和检索增强生成(RAG)技术的开源知识库问答系统,具有以下特点:

功能强大:支持直接上传文档或自动爬取在线文档,并对文本自动拆分、向量化和 RAG,可有效减少大模型幻觉,提供良好的智能问答交互体验。

模型中立:支持对接各种大语言模型,包括本地私有大模型如 Llama 3、Qwen 2 等,国内公共大模型如通义千问、腾讯混元、字节豆包、智谱 AI、百度千帆、Kimi、DeepSeek 等,以及国外公共大模型如 OpenAI、Azure OpenAI、Gemini 等,用户可按需灵活选择。

灵活编排:内置强大的工作流引擎和函数库,可编排 AI 工作过程,满足复杂业务场景下的需求,如通过基础组件及函数库实现用户问题分类、敏感词检索等。

无缝嵌入:支持零编码快速嵌入到第三方业务系统,如企业微信、钉钉、飞书、公众号等,让已有系统快速拥有智能问答能力,提高用户满意度。

性能优化:MaxKB v1.4.0 版本在系统性能上进行了优化,提升了系统的响应速度和处理能力,在处理大规模知识库和高并发查询时表现更加稳定。

功能丰富:提供丰富的 API 接口和插件支持,方便开发者进行二次开发和集成。还支持自定义问答模板、调整查询参数以及监控系统运行状态等。

MaxKB 广泛应用于企业内部知识库、客户服务、学术研究与教育等场景,自发布以来,在开源社区表现出了卓越的成长性,其 GitHub 上的 Star 数量和全网累计下载量增长迅速,还入选了 2024 年 Gitee 最有价值开源项目。

NEWS

MaxKB 搭建

你无需成为技术领域的行家里手,亦无需在配置环节耗费大量的宝贵时间。

MaxKB 秉持 “开箱即用” 的便捷特性,既支持直接上传文档,也能够自动爬取在线文档,从而迅速构建起属于你的知识库。

其内置的工作流引擎更是不容小觑,具备编排 AI 工作流程的卓越能力,无论面对的是简单的知识检索任务,还是错综复杂的业务流程,它都能从容应对,游刃有余。

并且,MaxKB 的模型中立性赋予了你极大的自主性,你能够依据自身实际需求灵活挑选最契合自己的模型,进而实现高度个性化的问答服务。

NEWS

MaxKB 部署

倘若你所使用的是 Ubuntu 22.04 或 CentOS 7.6 的 64 位系统,那么通过执行如下命令,便可快速完成 MaxKB 的部署:

docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages cr2.fit2cloud.com/1panel/maxkb

部署完毕后,你即可使用默认的账号密码登录 MaxKB 的管理界面。

要是你更倾向于图形化的操作方式,那么通过 1Panel 应用商店进行安装则是个绝佳选择,它会为你提供一个简洁明了且直观易懂的界面,全程引导你顺利完成整个安装流程。

待安装大功告成,你便能够着手配置大模型、精心创建知识库,进而打造出专属于你的 AI 助手应用程序。

MaxKB 的界面设计简约直观,即便是初次接触使用的新手,也能够迅速上手,轻松驾驭。

无论是企业的掌舵者、致力于创新开发的开发者,还是对 AI 前沿技术满怀热忱的普通个人,MaxKB 都将是你的不二之选。

它能够广泛适配于各类应用场景,诸如企业内部的知识库搭建、客户支持服务系统的优化升级,以及网站智能 AI 助手的创建等。

总结·点评

MaxKB 它优势和用处分为2个点:

  • 对于开发者,其灵活的模型对接与工作流编排功能提供了广阔的开发空间。
  • 对于个人用户,满足了在专业知识学习与日常信息处理方面的智能化需求。

MaxKB链接:

MaxKB 官网: https://maxkb.cn/

MaxKB GitHub 仓库:

https://github.com/1Panel-dev/MaxKB

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值