AI Challenger-人体骨骼关键点检测&& Human Pose Estimation

本文介绍了AI Challenger中人体骨骼关键点检测任务,涉及多个人体姿势估计(multi-person pose estimation)技术,包括openPose、G-RMI等方法。文章列举了不同方法的性能,并对比了bottom-up和top-down两种主要方法。同时提到了相关数据集如MSCOCO Keypoint、MPII和Posetrack。以openPose作为baseline,在AI Challenger上的初步尝试结果为26%。
摘要由CSDN通过智能技术生成

AI Challenger 其中的人体骨骼关键点检测主要依赖的技术背景为Human pose estimation。该领域分为单人和多人两类,根据竞赛数据集来看,该任务为mult-person pose estimation。以下先介绍该竞赛的相技术背景


--  Background

专业术语:multi-person pose estimation


文章列表

1. open-Pose:<Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields >(CVPR 2017 Oral, CMU)

   性能:COCO: 61%    MPII:75%

2. G-RMI <Towards accurate multi-person pose estimation in the wild>   (CVPR 2017 Google)

性能:COCO: 67% 

3. Associative Embedding <Associative Embedding:End-to-End Learning for Joint Detection and Grouping> (rejected by ICCV2017 , UMICH Jia Deng)

性能: COCO :66%  

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值