洛谷P4452 [国家集训队]航班安排
思路:
又有贡献,又有边权,又有限制,一看就是网络流。
考虑如何建图。
如果建图的对象是机场,那还需要对时间进行分层,很复杂。那么就以请求建图,将请求拆成两个点,出点和入点,出点是出发的时间,入点的到达的时间,两点之间连一条流量为
1
1
1,费用为
c
c
c的边,这样控制了请求只有一次贡献。
判断从
0
0
0号机场飞到
a
a
a的时间满不满足,满足可以建一个从源点到入点流量为
i
n
f
inf
inf,费用为
−
f
[
0
]
[
a
]
-f[0][a]
−f[0][a]的边。
再建一个超级源点,连向源点,流量为
k
k
k,费用为
0
0
0的边,限制
k
k
k次飞机。
判断从
b
b
b能否按时返回
0
0
0号机场,满足就可以建一条从出点向汇点流量为
i
n
f
inf
inf,费用为
−
f
[
b
]
[
0
]
-f[b][0]
−f[b][0]的边。
还需要判断两个机场之间是否可以互达,如果可以,建一条流量为
i
n
f
inf
inf,费用为
−
f
[
b
i
]
[
a
j
]
-f[b_i][a_j]
−f[bi][aj]的边。
由于题目已经说明
t
i
j
≤
t
i
k
+
t
k
j
,
f
i
j
≤
f
i
k
+
f
k
j
t_{ij}\le t_{ik}+t_{kj},f_{ij}\le f_{ik}+f_{kj}
tij≤tik+tkj,fij≤fik+fkj,所以两点之间距离肯定最近,花费肯定最小,本身保证了最短路径和最小费用。
这样就可以得到我们要求的就是最大费用最大流。可以把SPFA改成求最长路;也可以把上面的权值全部取反,然后最后得到的答案取反。
为了方便处理,我将所有的机场编号都
+
1
+1
+1处理。
代码:
#include<bits/stdc++.h>
#define pii pair<int,int>
#define ll long long
#define cl(x,y) memset(x,y,sizeof(x))
#define loop(x,y,z) for(x=y;x<=z;x++)
#define reve(x,y,z) for(x=y;x>=z;x--)
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define INF 1e18
const int NN=2e2+10;
const int N=5e2+10;
const int M=1e5+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
using namespace std;
struct edge
{
int u,v,f,w;
}e[M];
int head[N],len=1,dis[N],vis[N];
int maxflow,mincost;
int pre[N],path[N];
int ti[NN][NN],d[NN][NN];
void add(int u,int v,int f,int w)
{
e[++len]={head[u],v,f,w};
head[u]=len;
}
void inc(int u,int v,int f,int w)
{
add(u,v,f,w);
add(v,u,0,-w);
}
int spfa(int s,int t)
{
cl(dis,inf);
cl(vis,0);
cl(pre,-1);
dis[s]=0;
vis[s]=1;
queue<int>q;
q.push(s);
while(!q.empty())
{
int u=q.front(),i;
q.pop();
vis[u]=0;
for(i=head[u];i;i=e[i].u)
{
int v=e[i].v,w=e[i].w;
if(e[i].f && dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
pre[v]=u;
path[v]=i;
if(!vis[v])
{
q.push(v);
vis[v]=1;
}
}
}
}
return pre[t]!=-1;
}
void ek(int s,int t)
{
while(spfa(s,t))
{
int mi=inf,i;
for(i=t;i!=s;i=pre[i])
mi=min(mi,e[path[i]].f);
for(i=t;i!=s;i=pre[i])
{
e[path[i]].f-=mi;
e[path[i]^1].f+=mi;
}
maxflow+=mi;
mincost+=dis[t]*mi;
}
}
struct node
{
int a,b,s,t,c;
}p[N];
int main()
{
int n,m,i,j,k,T,s,t;
scanf("%d%d%d%d",&n,&m,&k,&T);
s=0;
t=2*m+2;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
scanf("%d",&ti[i][j]);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
scanf("%d",&d[i][j]);
for(i=1;i<=m;i++)
{
scanf("%d%d%d%d%d",&p[i].a,&p[i].b,&p[i].s,&p[i].t,&p[i].c);
p[i].a++;
p[i].b++;
}
for(i=1;i<=m;i++)
{
inc(i*2,i*2+1,1,-p[i].c);
if(ti[1][p[i].a]<=p[i].s)
inc(1,i*2,inf,d[1][p[i].a]);
if(ti[p[i].b][1]+p[i].t<=T)
inc(i*2+1,t,inf,d[p[i].b][1]);
for(j=1;j<=m;j++)
if(i!=j && p[i].t+ti[p[i].b][p[j].a]<=p[j].s)
inc(i*2+1,j*2,inf,d[p[i].b][p[j].a]);
}
inc(s,1,k,0);
ek(s,t);
printf("%d",-mincost);
return 0;
}