(费用流)洛谷P4452 [国家集训队]航班安排

洛谷P4452 [国家集训队]航班安排

思路:

又有贡献,又有边权,又有限制,一看就是网络流。
考虑如何建图。
如果建图的对象是机场,那还需要对时间进行分层,很复杂。那么就以请求建图,将请求拆成两个点,出点和入点,出点是出发的时间,入点的到达的时间,两点之间连一条流量为 1 1 1,费用为 c c c的边,这样控制了请求只有一次贡献。
判断从 0 0 0号机场飞到 a a a的时间满不满足,满足可以建一个从源点到入点流量为 i n f inf inf,费用为 − f [ 0 ] [ a ] -f[0][a] f[0][a]的边。
再建一个超级源点,连向源点,流量为 k k k,费用为 0 0 0的边,限制 k k k次飞机。
判断从 b b b能否按时返回 0 0 0号机场,满足就可以建一条从出点向汇点流量为 i n f inf inf,费用为 − f [ b ] [ 0 ] -f[b][0] f[b][0]的边。
还需要判断两个机场之间是否可以互达,如果可以,建一条流量为 i n f inf inf,费用为 − f [ b i ] [ a j ] -f[b_i][a_j] f[bi][aj]的边。
由于题目已经说明 t i j ≤ t i k + t k j , f i j ≤ f i k + f k j t_{ij}\le t_{ik}+t_{kj},f_{ij}\le f_{ik}+f_{kj} tijtik+tkj,fijfik+fkj,所以两点之间距离肯定最近,花费肯定最小,本身保证了最短路径和最小费用。
这样就可以得到我们要求的就是最大费用最大流。可以把SPFA改成求最长路;也可以把上面的权值全部取反,然后最后得到的答案取反。
为了方便处理,我将所有的机场编号都 + 1 +1 +1处理。

代码:

#include<bits/stdc++.h>
#define pii pair<int,int>
#define ll long long
#define cl(x,y) memset(x,y,sizeof(x))
#define loop(x,y,z) for(x=y;x<=z;x++)
#define reve(x,y,z)	for(x=y;x>=z;x--)
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define INF 1e18
const int NN=2e2+10;
const int N=5e2+10;
const int M=1e5+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
using namespace std;
struct edge
{
	int u,v,f,w;
}e[M];
int head[N],len=1,dis[N],vis[N];
int maxflow,mincost;
int pre[N],path[N];
int ti[NN][NN],d[NN][NN];
void add(int u,int v,int f,int w)
{
	e[++len]={head[u],v,f,w};
	head[u]=len;
}
void inc(int u,int v,int f,int w)
{
	add(u,v,f,w);
	add(v,u,0,-w);
} 
int spfa(int s,int t)
{
	cl(dis,inf);
	cl(vis,0);
	cl(pre,-1);
	dis[s]=0;
	vis[s]=1;
	queue<int>q;
	q.push(s);
	while(!q.empty())
	{
		int u=q.front(),i;
		q.pop();
		vis[u]=0;
		for(i=head[u];i;i=e[i].u)
		{
			int v=e[i].v,w=e[i].w;
			if(e[i].f && dis[v]>dis[u]+w)
			{
				dis[v]=dis[u]+w;
				pre[v]=u;
				path[v]=i;
				if(!vis[v])
				{
					q.push(v);
					vis[v]=1;
				}
			}
		}
	}
	return pre[t]!=-1;
}
void ek(int s,int t)
{
	while(spfa(s,t))
	{
		int mi=inf,i;
		for(i=t;i!=s;i=pre[i])
			mi=min(mi,e[path[i]].f);
		for(i=t;i!=s;i=pre[i])
		{
			e[path[i]].f-=mi;
			e[path[i]^1].f+=mi;
		}
		maxflow+=mi;
		mincost+=dis[t]*mi;
	}
}
struct node
{
	int a,b,s,t,c;
}p[N];
int main()
{
	int n,m,i,j,k,T,s,t;
	scanf("%d%d%d%d",&n,&m,&k,&T);
	s=0;
	t=2*m+2;
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++)
			scanf("%d",&ti[i][j]);
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++)
			scanf("%d",&d[i][j]);
	for(i=1;i<=m;i++)
	{
		scanf("%d%d%d%d%d",&p[i].a,&p[i].b,&p[i].s,&p[i].t,&p[i].c);
		p[i].a++;
		p[i].b++;
	}
	for(i=1;i<=m;i++)
	{
		inc(i*2,i*2+1,1,-p[i].c);
		if(ti[1][p[i].a]<=p[i].s)
			inc(1,i*2,inf,d[1][p[i].a]);
		if(ti[p[i].b][1]+p[i].t<=T)
			inc(i*2+1,t,inf,d[p[i].b][1]);
		for(j=1;j<=m;j++)
			if(i!=j && p[i].t+ti[p[i].b][p[j].a]<=p[j].s)
				inc(i*2+1,j*2,inf,d[p[i].b][p[j].a]);
	}
	inc(s,1,k,0);
	ek(s,t);
	printf("%d",-mincost);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值