大家好,小编为大家解答利用python进行数据分析案例的问题。很多人还不知道python数据分析要学哪些东西,现在让我们一起来看看吧!
Source code download: 本文相关源码
一、Python数据分析工具
二、数据探索
一、对数据的质量分析
异常值的分析:
1. 简单的统计量分析:查看最大最小值是否在合理范围
2.3δ原则,在正态分布下异常值被定义为一组定值与平均值的距离超过3倍的标准差。
3.箱形图分析:
异常值被定义为小于QL-1.5IQR 或大于QR+1.5IQR
QL是所有数据的下四分位,QR是所有数据的上四分位用python画雪人。IQR是QR-QL
DataFrame中describe()已经给出了基本的统计
二、数据特征分析
1.可以使用pandas、matplotlib绘制统计图
散点图矩阵可以分析每两个变量的关系。
2.计算相关系数
①Pearson相关系数
②Spearman秩相关系数
③判定系数
使用pandas的corr()计算相关系数
绘制条形图和折线图:
三、数据预处理
缺失:
插值法主要用两类:
拉格朗插值(python scipy库中有)、牛顿插值。
数据变换:
使用简单的函数如:x'=x^2 x'=sqrt(x) x'=log(x)
规范化:
①最小最大规范化
②零-均值规范化:将数据处理成均值为0,标准差为1
③小数定标规范化
连续属性离散化
数据规约:产生更小保持原数据完整性的新数据集。
主要方法有合并属性、决策树归纳、主成分分析
数值规约:????
四、挖掘建模
1、分类 预测
2、聚类分析