前段时间,我邀请一个朋友在我的指令俱乐部社群,分享了他通过帮客户定制智能体,年入百万的经历。
今天邀请我的小伙伴胡老师,给大家分享,他从一个纯外行到拿下15万AI智能体商单的蜕变经历。
一 个人故事
大家好,我是AI指挥家-胡艺,智能体工程师,去年5月份的时候还是个外行,那时候GPT风靡,自己也迷上了GPT。
每天都乐此不彼的学习、钻研提示词,付费加入各种社群链接AI圈的人脉和资源。
通过在袁老师指令俱乐部社群,分享一些干货,吸引了不少人购买、定制指令、付咨询费,接1W元AI写书订单。
再到成功入职AI智能体公司,交到一些志同道合伙伴,一起接到15W智能体定制大单,目前也刚成立了自己的智能体公司。
我也算是借着AI这个风口实现转型了。
接触AI之前是做外汇量化交易的,经过疫情的几年市场萎缩的厉害,加上经纪商跑路,不得已必须转行。
刚开始也很迷茫面试各种公司,基本只能找几千块钱的工作,就去了个做抖音领域的公司先干着再说。
再到后来就是遇到了AI发生了这么一段新的故事。
我拿到的结果跟很多人比起来都算很少了,没有花很多精力,基本就是业余时间。
这也足以说明:AI对普通人非常友好,AI和传统的技术是截然相反的东西。
传统技术是越做越深,外行很难插足,AI技术是越做越简单,只要愿意花时间就能学会,而且它对传统技术是降维打击。
可以说AI时代,是对普通人最好的时代。
二 15W商单的变现经历
- 发现coze平台
一切的开始都得从扣子平台说起,我是从去年开始研究使用coze海外平台,再到使用国内版。
那个时候,我就在想扣子平台这么好用,体验已经完全不输GPTs了,怎么才能变现赚钱?
因为所有基础设施(包括知识库、插件、工作流、数据库等)都搭建的非常好,而且在国内也合规,如果有API接口直接就可以交付了。
在我们接到15W订单的时候,扣子还只有呆呆的豆包模型,API接口也还没开放。
那些天就到处找内测申请入口,问官方什么时候上新模型,可以说,我们在扣子平台商业化变现的最前沿了。
好在最后,模型和API内测也都赶上了。
- 客户沟通
客户是环保行业里一家水处理公司,是由我的合作伙伴的姐姐介绍的。
他们一直想通过AI产品傍身,提高公司竞争力。
经过一系列沟通,包括案例的展示、产品构思、AI专业知识普及等,客户很信任我们,就决定交给我们做了,报价15W。
交付内容包括一款APP、15个左右智能体、合规上架(算法备案、模型备案、应用商店上架等)。
其实这个报价算比较低的,我们刚开始心里也没底,想着能拿下第一单,跑通0-1最重要。
经过这一单,我们不仅有智能体设计、APP开发、还有算法备案、模型备案等衍生服务了,利润也是比较高的。
- 团队组建
团队成员有智能体工程师、产品经理、前端工程师、后端工程师,都是志同道合的朋友、同学、发小,按项目制分钱。
所以基本也没有什么硬成本。
4. 开始交付
我本人是负责智能体板块的交付,其他APP开发的东西我也不是很专业,所以多聊聊智能体交付。
目前接触不少B端客户需求,大部分是这两类智能体需求,一类是服务自身:提效类,一类是服务客户:客服类。
客服类智能体需求占比尤其大,基本只要是个公司,首先就会要客服类的智能体。
最近陆陆续续,很多公司找到我做定制,比如做酒店的,定制一套自动回复客户的智能体机器人,在咨单、成交沟通、售后各环节服务。
而客服类智能体一般靠提示词设计、知识库就可以解决,复杂一些的会用到插件、工作流设计等。
客户跟我们反馈智能体的回答的还是很专业的,没有出现过负面反馈。
谈客户的时候一定要做好demo演示,因为现在AI对于很多公司来说是很前沿的东西。
有时候连客户自己都不知道AI能给他带来什么好处。
多准备些案例直接演示效果是最好的。
关于具体扣子智能体搭建技巧方面,比如指令设计、知识库整理、插件代码撰写、工作流架构等内容比较多,这里就不细讲了,下次再分享。
三 智能体变现前提
1.为什么我长期看好智能体
在我自己看来,指令是灵魂,智能体是完整体,智能体可以实现更多、更复杂的需求,也更好商业化一些。
一个智能体可以取代之前几百几千甚至上万的人工成本,碾压人工。
2. 选择靠谱的智能体开发平台
目前市面上有一些不错的智能体开发平台,比如Dify、Betteryeah、腾讯元器、百度文心智能体平台、字节扣子、FastGPT、zelinai等等。
我目前只推荐百度文心智能体、腾讯元器、字节扣子、DIfy。
首推扣子和Dify,分别是闭源、开源里最强的两家。
3. 我目前主要用扣子平台的三个理由
好用:插件非常多,基本上想要的功能都有对应插件,除了工作流还有图像流等功能,功能很全面。
交付起来会比较容易,尤其对没有开发能力的人来说,都可以轻松交付。
便宜:扣子平台API接口近期开始收费了,智能体每次调用0.002元,模型token价格与市场价一致,整体算下来依然很划算的,对我来说目前还没有替代选项。
生态:再一个就是生态,我们交付智能体的时候,不可能在智能体平台使用,一般都需要集成部署。
大厂生态都比较全,可以免费部署到很多地方使用,方便我们交付。
比如扣子平台支持的发布平台:
- 客户资源
客户群体:智能体最好的客户是小B或者大B的定制,C端很难变现,市面上免费的东西太多了,基本收不上来什么钱。
合作渠道:我自己目前还在公司搬砖,所以不便做明显的市场推广。
主要走的是合作模式。合作的有数字人公司、软件开发公司。
与数字人公司合作,是因为数字人市场目前在快速增长,且客户群体接受度比较高,很好转化。
软件开发公司的客户群体也非常精准,很多AI类软件定制需求,比较互补,他们可以帮助你解决不少技术上的问题。
这两类公司是比较优质的合作渠道,目前都已经有合作方了。
当然,如果可以做个人IP的话,还是建议做一下个人IP,这样的话,势能更强,收益也会相对较高,变现方式也会更多。
四 最后送大家的话
- 借助AI突破能力圈
其实学习、成长是比较难的事情,人天生喜欢待在舒适区,对陌生的东西有恐惧感。
但是有了AI,就不一样了,他什么都会,可以带着你走每一个步骤,不厌其烦,直到你完全学会。
我这一路也都是AI陪着我一步步向前,从从来没写过代码到能独立编写各种各样的插件代码,甚至我没接触过的专业领域也都可以靠AI交付掉,。
很多事情只要经过了0-1就会特别简单。
有时候我还会非常享受这个过程,这是以前从来没有过的体验。
- 实操才是入门的最快方式
对智能体还没有入门的同学,一定要尽快做出自己的第一个Bot。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
