大型语言模型:在经济学家和中央银行的应用指南

1. 引言

大型语言模型(LLMs)是一种强大的工具,用于分析和处理大量的文本数据。在经济学和中央银行领域,LLMs的应用潜力巨大,特别是在处理和分析大量的政策声明、财务报告和新闻文章方面。本报告旨在详细分析LLMs的基本概念、技术基础、应用步骤、实际应用案例以及常见误区和最佳实践,以帮助经济学家和中央银行研究人员更好地理解和利用LLMs。

2. LLMs的基本概念

2.1 什么是LLMs

大型语言模型(LLMs)是一种基于深度学习的自然语言处理(NLP)技术,能够通过将文本转换为向量来进行分析。LLMs的核心思想是通过机器学习算法将复杂的无结构数据转换为结构化数据,从而便于进行数学和统计分析。

2.2 LLMs的优势

LLMs的主要优势在于其能够处理和分析大量的文本数据。通过将文本转换为向量,LLMs能够捕捉到词语之间的语义关系,从而更准确地理解文本的含义。此外,LLMs还能够进行情感分析、主题建模和预测分析,这对于经济学和中央银行研究人员来说非常有价值。

2.3 LLMs的应用领域

LLMs在经济学和中央银行领域的应用非常广泛。例如,LLMs可以用于分析政策声明、财务报告和新闻文章,以识别影响经济和金融市场的关键因素。此外,LLMs还可以用于进行情感分析,以了解市场情绪和投资者信心。

3. LLMs的技术基础

3.1 转换器架构

转换器架构(Transformer Architecture)是LLMs的核心技术。转换器架构通过考虑上下文来生成词嵌入(word embeddings),从而能够更准确地理解词义。转换器架构的主要创新在于其多头注意力机制(Multi-Headed Attention)和位置编码(Positional Encoding)。

3.2 多头注意力机制

多头注意力机制(Multi-Headed Attention)是转换器架构的核心组成部分。它通过多个并行的注意力层来捕捉词语之间的语义关系。例如,在句子“I sat on the south bank of the river Main overlooking the European Central Bank”中,“bank”这个词在不同的上下文中有不同的含义。多头注意力机制能够通过考虑上下文来生成不同的词嵌入,从而更准确地理解词义。

3.3 位置编码

位置编码(Positional Encoding)是转换器架构的另一个重要组成部分。它通过为每个词添加位置信息来保留词语的顺序,从而使得转换器架构能够并行处理数据。位置编码的数学表达式如下:

其中, 是词语在句子中的位置, 是维度的索引, 是词嵌入的维度。

3.4 词嵌入

词嵌入(Word Embeddings)是LLMs的基本单位。词嵌入通过将词语转换为向量来捕捉词语之间的语义关系。例如,在句子“The bank raises rates to lower inflation”中,“bank”这个词在不同的上下文中有不同的含义。通过考虑上下文,词嵌入能够更准确地理解词义。

4. LLMs的应用步骤

4.1 数据组织

数据组织是LLMs应用的第一步。数据组织包括文本检索、预处理和向量嵌入。文本检索是指从各种来源(如政策声明、财务报告和新闻文章)中收集相关的文本数据。预处理是指对文本数据进行清洗和分词,以便于进行向量嵌入。向量嵌入是指将文本转换为向量,以便于进行数学和统计分析。

4.2 信号提取

信号提取是LLMs应用的第二步。信号提取是指从向量嵌入中提取关键信息,以便于进行定量分析。信号提取的常用方法包括主题建模、聚类技术和嵌入式降维。主题建模是指通过识别文本中的主要主题来提取关键信息。聚类技术是指通过将相似的向量嵌入聚类来提取关键信息。嵌入式降维是指通过降低向量嵌入的维度来提取关键信息。

4.3 定量分析

定量分析是LLMs应用的第三步。定量分析是指对提取的关键信息进行数学和统计分析。定量分析的常用方法包括情感分析、回归分析和时间序列分析。情感分析是指通过识别文本中的情感来进行定量分析。回归分析是指通过建立回归模型来进行定量分析。时间序列分析是指通过分析时间序列数据来进行定量分析。

4.4 结果评估

结果评估是LLMs应用的最后一步。结果评估是指对定量分析的结果进行评估,以确保其准确性和可靠性。结果评估的常用方法包括误差分析、交叉验证和模型选择。误差分析是指通过计算误差来评估结果的准确性。交叉验证是指通过交叉验证来评估结果的可靠性。模型选择是指通过选择最佳模型来评估结果的准确性和可靠性。

5. 实际应用案例

5.1 股市动态分析

在实际应用案例中,文章展示了如何使用LLMs分析股市动态的驱动因素。通过对60,000多篇新闻文章进行分析,文章展示了LLMs如何帮助识别影响股市的关键因素,如宏观经济政策、货币政策和市场情绪。

5.2 数据组织

在数据组织阶段,研究人员从Factiva检索了63,388篇新闻文章,并将其分割成100个单词的文本块。然后,研究人员使用Llama 3.1 8B对每个文本块进行向量嵌入,生成4,096维的向量嵌入。

5.3 信号提取

在信号提取阶段,研究人员使用BERTopic对文本块的向量嵌入进行主题建模。通过主题建模,研究人员识别出了三个主要主题:基本面、货币政策和市场情绪。

5.4 定量分析

在定量分析阶段,研究人员使用Llama 3.1 70B对每个主题进行情感分析。通过情感分析,研究人员计算出了每个主题的情感得分,并将其与股市表现进行对比分析。

5.5 结果评估

在结果评估阶段,研究人员使用相关系数来评估情感得分与股市表现之间的关系。结果显示,市场情绪和基本面与股市表现的相关性最高,分别为0.64和0.52,而货币政策的相关性较低,为0.30。

6. 常见误区和最佳实践

6.1 常见误区

在使用LLMs进行研究时,常见的误区包括对LLMs能力的不现实期望、计算资源管理不善和人工判断的不足。例如,研究人员可能会高估LLMs的能力,导致结果不准确。此外,计算资源管理不善可能会导致计算效率低下,而人工判断的不足可能会导致结果不可靠。

6.2 最佳实践

为了避免常见误区,研究人员应遵循一些最佳实践。例如,研究人员应对LLMs的能力有现实的期望,合理管理计算资源,并充分利用人工判断来评估结果。此外,研究人员还应使用多种方法来验证结果的准确性和可靠性。

7. 结论

总的来说,大型语言模型(LLMs)在经济学和中央银行应用中具有巨大的潜力。通过详细分析LLMs的基本概念、技术基础、应用步骤、实际应用案例以及常见误区和最佳实践,本报告展示了LLMs如何帮助经济学家和中央银行研究人员更好地理解和分析大量的文本数据。未来,随着LLMs技术的不断发展,其在经济学和中央银行领域的应用前景将更加广阔。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值