一、背景:AI驱动图表生成的未来
在数字化时代,图表作为信息传递的核心工具,广泛应用于技术文档、项目管理、教学演示等场景。然而,传统图表绘制工具存在效率低、协作难、维护成本高等问题。随着AI技术的快速发展,自然语言生成图表成为可能。本文将介绍如何基于两大开源项目——Mermaid(图表生成引擎)和Dify(LLM应用开发平台),构建一个高效、智能的图表生成解决方案。
二、核心工具解析
Mermaid:文本即图表的开源引擎
Mermaid是一个功能全面且易于使用的文本驱动图表绘制工具,其官方网站为用户提供了详尽的指南、丰富的示例以及便捷的实时编辑器。通过Mermaid,用户可以轻松地使用简洁直观的文本语法生成多种类型的图表,包括但不限于流程图、时序图、甘特图、类图、状态图、实体关系图、用户旅程图、饼图、四象限图以及Git图等。这些图表类型广泛应用于项目管理、系统设计、数据分析等多个领域,帮助用户更直观地理解和展示复杂的信息。
访问Mermaid的官方网站,即可查阅到每种图表类型的详细语法规则和示例代码。借助官网提供的实时编辑器,用户可以即时编写Mermaid语法并查看生成的图表效果,从而快速上手并创建符合自己需求的图表。此外,Mermaid还支持与多种文档和项目的集成,用户可以根据需要将生成的图表嵌入到Markdown文件、网页、演示文稿等中,实现信息的无缝传递和共享。
官网:https://mermaid.js.org/ |
GitHub:https://github.com/mermaid-js/mermaid
多种图表类型支持:覆盖13种主流图表类型
动态渲染:基于JavaScript实时渲染
企业级扩展:支持批量生成PDF/PNG
生态集成
Dify:LLM应用编排
Dify是一个功能强大的开源LLM(大型语言模型)应用开发平台,它为用户提供了便捷的多模型支持,允许开发者根据需求选择合适的模型进行应用开发。
平台内置可视化界面,降低了开发门槛,使得非技术人员也能轻松上手。同时,Dify还提供丰富的API接口,方便开发者进行高效、灵活的编程。
通过Dify,用户可以快速构建和部署各种AI应用,加速LLM技术在各行业的落地应用,提升开发效率和创新能力。
官网:https://dify.ai/
GitHub: https://github.com/langgenius/dify
三、基于Dify构建图表生成智能体
步骤1:创建智能体
登录Dify进入首页,创建一个空白应用,应用类型选择Agent,填写应用名称。
步骤2:智能体编排
系统提示词配置:给你的智能体制定角色和回复规则,让他更"听话"
系统提示词内容(可参考):
你是一个图表绘制专家,分析用户的问题,使用Mermaid语法输出专业的图表。
支持的图表类型:流程图、时序图、类图、状态图、实体关系图、用户旅程图、甘特图、饼图、象限图、需求图、Gitgraph 图、C4 图、思维导图、时间线图、ZenUML、桑基图、XY 图、框图、数据包图、看板图、架构图
注意:解析用户需求,选择合适的图表输出,只输出图表即可,不要有额外的回复
步骤3:LLM大模型配置
Dify接入大模型流程可参考:https://docs.dify.ai/zh-hans/guides/model-configuration
注意:这里支持参数微调,可开启最侧开关按钮根据选择的LLM大模型来调整参数值
步骤4:智能体管理功能设置
开启"对话开场白"、"下一步问题建议"功能按钮,配置一下对话开场白,点击保存后发布。
步骤5:小试牛刀
与智能体对话,发送消息:“oauth2授权码模式的认证流程”
智能体根据要求生成了一个详细的流程图,效果还不错!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。