近期因 DeepSeek 人工智能工具引发的医疗领域新现象越来越多。比如一位广东医生在社交媒体上自嘲患者通过 DeepSeek 查询后质疑其治疗方案,经核实发现 DeepSeek 的诊断结果正确,甚至促使医生重新查阅指南。类似情况在社交平台上引发热议,部分医生表示患者会拿着 DeepSeek 的诊断结果要求开药。
图片来源:新晚报
所以,DeepSeek 如今在医疗领域到底有哪些应用?DeepSeek 的出现又将如何改写人类健康未来?这不是科幻电影的桥段,而是 DeepSeek 医疗版正在发生的现实革命。
政策东风
2024 年 11 月 14 日,国家卫生健康委、国家中医药局、国家疾控局联合发布了政策文件《卫生健康行业人工智能应用场景参考指引》,旨在推动「人工智能+」在医疗领域的应用创新。
图片来源:国家卫生健康委员会
该指引从四大领域出发,提出了 84 个典型应用场景,涵盖医疗服务管理、基层公卫服务、健康产业发展以及医学教学科研等方面。这些场景包括医学影像智能辅助诊断、智能医院经济管理决策支持、智能审方等,旨在通过人工智能技术提高医疗服务的精准性和效率。
图片来源:国家卫生健康委员会
此文件的发布体现了国家对 AI + 医疗的重视和支持,强调了人工智能在提升医疗服务质量、优化医疗资源配置、推动医疗智能化发展中的重要作用。
DeepSeek 落地医院,医疗界迎来变革风暴!
据不完全统计,截至 2025 年 2 月 24 日,全国已有数十家医院宣布接入 DeepSeek 并完成本地化部署。 这些医院包括但不限于:昆明医科大学第一附属医院、广西自治区人民医院、北部战区总医院、成都第一人民医院、柳州市人民医院、深圳大学附属华南医院、复旦大学附属华山医院、瑞金医院、上海市第四人民医院、上海第六人民医院、北京中医药大学东方医院、湖南省人民医院、陆军军医大学新桥医院、徐州矿务集团总医院等。
例如,昆明医科大学第一附属医院正式上线 DeepSeek 患者服务系统,嵌入医院官方微信小程序中,为患者提供智能化、便捷化、个性化的健康管理服务。系统包含智能导诊、智能预问诊和智能报告解读三大功能,通过自然语言处理和医学知识图谱技术,帮助患者快速选择科室、梳理病情并解读医学报告,提升就医体验。
图片来源:昆明医科大学第一附属医院
又例如,广西壮族自治区人民医院率先在全区完成 DeepSeek 大模型的本地化部署,将其融入医院 HIS 系统,并在耳鼻咽喉头颈科、眼科等临床科室投入使用。据了解, DeepSeek 能够精准分析患者的健康数据,为医生提供科学、精确的诊断建议,提升临床诊疗效率。此外,医院还计划构建专科知识库,探索更多医疗场景的深度融合应用,推动区域医疗数字化转型。
图片来源:广西自治区人民医院
再比如中国人民解放军北部战区总医院率先在军队医疗系统接入 DeepSeek ,实现大模型与临床工作站的深度融合,落地三大智能应用场景:AI 助手无障碍沟通、医学智库随时调用和智能生成时空档案。系统通过「中国芯+中国智造」筑牢信息安全防线,实现院内数据闭环流转,为医护人员提供高效支持,同时为患者提供全病程智能管理服务,提升就医体验。
图片来源:北部战区总医院
以上三家医院均通过 DeepSeek 实现了智能化医疗服务的升级,推动了医疗数字化转型。不同的是昆医大附一院主要聚焦于患者端服务,如智能导诊、预问诊和报告解读;广西壮族自治区人民医院更注重 AI 技术与医院 HIS 系统的融合,以及在临床科室的实际应用;而北部战区总医院则强调信息安全和全病程智能管理体系的构建,应用场景更广泛,包括医护人员支持和患者全周期管理。
DeepSeek改变医院:从传统到智能,医疗“智变”进行时!
DeepSeek 作为一款开源且高效的人工智能大模型,正在深刻改变医院的运营和医疗服务模式,具体体现在以下几个方面:
(1)节约成本
与传统的闭源模型相比, DeepSeek 无需支付高昂的授权费用,且对算力的需求显著降低,医院无需投入巨额资金升级硬件设施即可部署。譬如以往的大模型准入费用可达数百万,而 DeepSeek 的免费和高效特性为单家医院可节省数百万的部署费用。此外, DeepSeek 的高效性也可大大降低医院在数据处理和系统维护方面的成本。
图片来源:腾讯网
(2)精准医疗
DeepSeek 在精准医疗方面取得了显著成果。如广西医科大学附属医院的泌尿外科 AI 医生通过 300 万字的语料训练,诊断准确率达到了 96%;成都市第一人民医院则利用 DeepSeek 自动生成中医诊疗方案,不仅覆盖复诊建议,还提供饮食、运动等个性化指导,进一步提升了医疗服务的精准度;四川省人民医院通过 DeepSeek 与三维重建技术,为高龄癌症患者制定详细的手术方案,成功实施手术;北京某医院神经外科主任医师在处理一例复杂脑瘤患者时, DeepSeek 的表现被认为与省级三甲医院专家相当,尤其在深入的医学问题分析上表现出色。
(3)效率提升
通过智能化手段,DeepSeek 可显著提升医院的运营效率。如武汉江夏区第一人民医院引入 DeepSeek 后,病历质控实现一键优化,门诊分诊准确率提升了 40%。医生利用 DeepSeek 生成结构化病历的时间从传统的 30 分钟缩短至 2 分钟,书写负担减少了 70%,极大地提高了工作效率。同时, DeepSeek 还能够实时校验病历的完整性和逻辑矛盾,质控结果自动同步至医务科管理系统,关联绩效考核。除此之外,成都市第一人民医院的临床营养科副主任刘言提到, DeepSeek 能够快速完成繁琐的计算和评估工作,如儿童生长发育评估,几秒内即可出结果,极大地提高了工作效率。
DeepSeek 的出现,就意味着医生要失业了吗?
近日丁香医生平台专家测试和研究了 DeepSeek 以及 ChatGPT 在医学诊断上的表现,发现目前两者仍存在局限性,准确率均未能达到 100%。具体为通过一场模拟在线问诊的「PK」实验,比较了两者的表现,结果显示两者在医学专业性上表现「半斤八两」,均未达到完美水平,且 DeepSeek 在回答速度上明显慢于 ChatGPT ,尽管如此, DeepSeek 在某些方面仍略胜一筹。但整体来看, AI 在医学领域的应用仍存在局限性,无法完全替代医生。此外,医学领域对临场反应和综合研判能力要求极高, AI 难以完全替代医生面对复杂临床问题的决策能力。该文章还指出, AI 取代医生的可能性在短期内几乎不存在,但会使用 AI 的医生相比不会使用 AI 的医生在临床上会更有竞争力。
图片来源:凤凰网
人工智能在临床工作中出错:责任谁来承担?
AI 工具在医疗领域的应用虽然带来了诸多便利,但也存在出错的风险。BBC 的一项研究显示,主流 AI 聊天机器人在生成新闻摘要时的错误率超过 50% , 其中 19% 的回答存在事实错误。近似的还有康奈尔大学的研究发现,语音转文本模型 Whisper 在转录医疗对话时,约 1% 的内容是凭空捏造的,且 38% 的「幻觉」内容可能对患者造成危害。
在医学诊断方面,虽然 DeepSeek 在某些测试中表现优异,但在处理复杂病例时仍可能无法考虑患者偏好、症状演变等细微差别。虽能提供靠谱的诊断建议,但医生仍需根据患者具体情况做出决策。例如,湖南等地已明确禁止互联网医院使用人工智能自动生成处方,该举措强调医生在诊疗过程中的主导地位。即便多家医院已接入 DeepSeek 用于辅助诊断、优化诊疗方案等,但专家指出人工智能仅能作为辅助工具,无法替代医生,且其建议需经医生确认后才能作为诊疗依据。因此, AI 更适合辅助,而非完全替代医生。
同时,在 2021 年 6 月 28 日,世界卫生组织(WHO)就已经发布了《医疗卫生中 AI 使用的伦理和管治》指南,这是首份根据道德规范和人权标准制定的医疗 AI 领域国际指南。指南提出了六项核心原则,包括保护自治权、促进人类福祉、确保透明度、培养问责制、确保包容性以及推动可持续发展。WHO 指出, AI 在医疗领域的应用前景巨大,但也面临诸多伦理挑战,如医护人员失业、 AI 与医生的“同行分歧”以及责任归属等问题。指南强调, AI 技术的误诊责任不应仅由医生承担,而应明确开发人员、制造商和政府机构的相对责任。同时, WHO 呼吁建立医疗 AI 治理框架,以应对数据治理、隐私保护、算法偏见和环境影响等伦理问题。
图片来源:澎湃网
结语
人工智能时代已来,尽管 DeepSeek 等 AI 工具在医疗领域展现出强大的辅助能力,也无需过分紧张 AI 会取代医生。但可以预见的是,未来医生的角色可能会从传统的诊疗工作转向更复杂的病例分析、患者沟通和 AI 工具的监督与优化。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。