DeepSeek爆火到现在,留给程序员们的时间不多了。
仅仅一个多月的时间,国内诸多领域的头部力量纷纷迅速接入DeepSeek。国民级应用如微信、阿里、百度,手机终端厂商荣耀、小米、OPPO、vivo,汽车终端领域的比亚迪、一汽、上汽,还有政企单位、居民服务部门以及各大高校,均积极投身其中。
国外,OpenAI首席执行官Sam Altman在X上发帖:“DeepSeek的表现令人印象深刻!”特朗普公开喊话:“DeepSeek的崛起,是对美国科技界的警钟!”AI数据服务公司Scale AI创始人Alexander Wang更直言:“DeepSeek-V3是中国科技界带给美国的苦涩教训。”
这里介绍一本新书《DeepSeek 原理与项目实战》。这本书还未正式出版,便已引发广泛关注,其中文繁体版和英文版版权更是抢先售出,收获了读者们如潮的好评。本书由未来智能实验室(Future Intelligence Lab) 创作,围绕DeepSeek-V3展开,结合理论解析与实际应用,带领广大程序员全面探索这一开源大模型的核心技术与实践价值,在AI时代抢占先机!
1、DeepSeek面面观
DeepSeek系列模型由深度求索科技(DeepSeek AI) 开发,涵盖了从通用语言模型到特定领域应用的一系列创新技术。
目前关注度较高的是基础语言理解(DeepSeek LLM)、代码生成(DeepSeek Coder/Coder V2)、数学推理(DeepSeek Math)、多模态交互(DeepSeek VL)和第三代混合专家模型(DeepSeek V2/V3)等七种模型。
七大核心模型均结合了前沿架构与高效训练技术,为各类复杂任务提供了强大的解决方案,构建起覆盖文本、代码、数学及视觉的完整能力版图。
▲DeepSeek全系列大模型对比表
其中,深度求索科技推出的第三代大规模混合专家(MoE)模型DeepSeek V3,凭借其高达 6710 亿的总参数量、长上下文支持、每个 Token 仅激活21 亿参数和 FP8 优化技术等,成为该系列的旗舰模型,是当前语言模型领域的顶尖代表之一。
▲DeepSeek-V3 整体架构图(含 MoE)
DeepSeek能够一鸣惊人,主要得益于其在性能、成本和开源程度等方面的突出表现。例如,DeepSeek V3在 MMLU、HumanEval、CMMLU等关键任务中超越 Dense 架构模型,充分展现出卓越的任务适配能力和高效的资源利用能力。
▲DeepSeek V3 在多任务评测中的性能表现
▲DeepSeek-V3 训练消耗
高性能,低成本,还开源,DeepSeek到底为什么这么厉害?其底层技术范式的重构是关键因素。为了解决大模型训练与推理中的关键挑战,展现卓越的性能优势,DeepSeek V3 结合了一系列技术创新:
1.1、 混合专家架构(MoE)优化
DeepSeek V3 采用最新的 MoE 架构,通过动态路由机制实现专家选择的高效性与准确性。每个 Token 仅激活部分专家,这一策略大幅降低了计算成本,同时却丝毫无损模型的性能表现,确保其输出始终维持在高质量水平。
1.2、 长上下文支持与扩展
支持长达 128K 的上下文窗口,DeepSeek V3 能够处理长文档、复杂代码以及多轮对话等任务,为研究报告、法律文书等长文本应用提供了技术保障。
1.3、动态负载均衡与通信优化
通过无辅助损失的负载均衡策略和 DualPipe 算法,DeepSeek V3 有效平衡了多专家节点间的计算负载,并在跨节点通信中实现了计算与通信的全面重叠,大幅提升了分布式训练的效率。
1.4、FP8 混合精度训练
在训练中采用 FP8 混合精度技术,DeepSeek V3 在降低显存需求的同时,保持了数值计算的稳定性与模型性能,大幅减少了硬件资源占用。
▲基于 FP8 的 DeepSeek-V3 性能优化策略
像这样厉害的性能优化和技术创新,还有很多。
而且,DeepSeek V3发布即选择全栈开源,实质是按下AI技术扩散的指数级增长按钮。如今,任何人都可以使用DeepSeek,基于它进行修改、蒸馏出适合自己的小型模型,并基于这些定制模型开发出专属的应用程序。
当技术爆炸遇见知识鸿沟,《DeepSeek 原理与项目实战》 这本兼顾理论深度、技术广度和实践经验的好书,便为读者打开了通向DeepSeek世界的大门。
本书的作者是未来智能实验室,由多名国内顶尖高校的博士、硕士组成,专注于大模型的研发与创新,聚焦于自然语言处理、深度学习、计算机视觉和多模态学习等领域。团队致力于推动AI技术的突破,并为企业和开发者提供全面的技术支持,助力复杂AI项目的高效开发与应用。
团队成员拥有丰富的实践经验,曾参与国内知名企业的大模型设计与落地项目,涉及对话系统、智能推荐、生成式AI等多个领域。团队通过技术研发与方案优化,促进大模型在工业界的落地,并加速智能化应用的普及与行业创新。
现在,就跟着这本书动手玩转DeepSeek开发吧。
2、动手玩转DeepSeek
本书旨在为读者提供一份系统性的学习指南,按照**“生成式AI的基础与技术架构——生成式AI的专业应用与 Prompt 设计——实战与高级集成应用”**三部分来组织内容,通过理论讲解与实用案例相结合的方式,帮助读者掌握从原理到应用的完整流程。
2.1、生成式AI的基础与技术架构
首先,从理论层面入手,第一部分(第 1~3 章)讲解了Transformer与注意力机制的原理、DeepSeek-V3 架构的核心技术以及模型开发的基础知识。
通过对MoE 路由、上下文窗口优化和分布式训练策略的深入剖析,揭示了DeepSeek-V3在训练成本与计算效率上的独特优势,为后续的技术应用奠定了理论基础。
2.2、生成式AI的专业应用与 Prompt 设计
在掌握了理论基础之后,我们就可以进一步了解模型的实际表现与开发实践了。第二部分(第 4~9 章)不仅详述了 DeepSeek-V3在对话生成、数学推理、代码补全等领域的能力,还通过详细的代码案例展示了如何利用模型实现任务的精准解决。
此外,书中对对话前缀续写、FIM 生成模式和 JSON 输出等高级功能进行了系统讲解,帮助开发者实现模型的高效定制化。
2.3、实战与高级集成应用
理论和工具都学会后,就要动手实战了,第三部分(第 10~12章)详细讲解了从函数回调、缓存机制到实际应用开发的全流程。
书中通过对 DeepSeek 开放平台与 API 的深度剖析,提供了从 API 调用到性能优化的全方位指导。同时,通过三种实际场景的集成开发案例展示了 DeepSeek-V3 在生产环境中的强大应用潜力。
集成实战1:基于LLM的Chat类客户端开发
集成实战2:AI 智能助理开发
集成实战3:基于VS Code的辅助编程插件开发
3、结语
在当下大模型技术快速迭代的浪潮中,本书以技术前瞻性、实战系统性和应用普适性形成显著特色:
- 技术前瞻性: 内容体系深度结合DeepSeek技术团队的最新研究成果,在模型发布后第一时间完成知识体系转化,确保技术解密的时效价值。
- 实战系统性: 突破传统技术书籍重理论轻实践的局限,从生成式AI的理论基础讲解到DeepSeek-V3的技术架构,再到具体的开发实践,构建了从模型部署、参数微调到应用落地的全链路技术框架。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。