一文读懂大模型与自然语言处理及入行指南

刷到关于大模型技术的文章时,满篇“Transformer”“自注意力机制”让人头疼,不知从哪学起?

想转行NLP领域,可网上教程要么太理论化,要么代码根本跑不起来,实操没几分钟就报错,调试两小时?

听说大模型能自动写代码、做数据分析,自己尝试时总被“幻觉回答”坑得怀疑人生?

今天咱们就聊聊大模型和自然语言处理,弄清楚它们的底层逻辑、彼此的联系,以及如何入行。

一、大模型是什么

大模型,简单来讲,就是借助海量数据和强大计算能力训练出的、拥有超多参数的模型。它如同一个超级大脑,经过大量知识 “喂养”,变得无所不知。

大模型的底层原理基于神经网络架构,以常见的 Transformer 架构为例,其核心是自注意力机制。这一机制能让模型处理信息时,像我们看书自动捕捉关键语句那样,识别出重要内容。
img

模型训练时会不断调整内部参数,以此学习数据中的规律。比如分析大量文本时,能发现哪些词常一起出现、表达什么意思,从而掌握词汇间的联系。而大模型由于参数数量庞大,学习和表达能力更强,能记住更多复杂知识。
img

不过呢,大模型也有一些小缺点。它有时候不太可靠,比如给出的答案可能不太准确;还特别依赖训练数据,如果数据质量不高或者有偏差,那模型学到的东西也会受影响;另外,它的因果推理能力相对弱一些,搭建起来成本也挺高,而且要找到特别合适的实际应用场景,也不是一件容易的事儿。

二、探索自然语言处理的奇妙世界

自然语言处理,就是让计算机能够理解和处理咱们人类日常说的、写的语言。想象一下,让计算机像我们一样能听懂人话、读懂文字,还能和我们顺畅交流!

img

从简单的文本分类,比如判断一篇文章是关于体育、娱乐还是科技的,到情感分析,看看一段文字表达的是开心、难过还是生气,再到复杂的机器翻译、文本生成、问答系统等,都是自然语言处理的范畴。

以前呀,自然语言处理主要靠人工制定语法和语义规则,但效果不太好,因为自然语言太复杂多变了。后来机器学习技术兴起,通过让计算机从大量文本数据里自己去学习语言的特征和模式,情况就好多了。

img

再后来,深度学习技术一出现,像循环神经网络、卷积神经网络这些基于神经网络的模型,更是让自然语言处理有了质的飞跃。特别是 Transformer 架构的出现,基于它的预训练模型,比如大家都听说过的 GPT、BERT,在自然语言处理各种任务里表现得超级厉害,一下子就成了主流技术。

三、大模型与自然语言处理的联系与区别

(一)紧密联系

大模型对于自然语言处理来说,那可是太重要啦!就像给自然语言处理插上了一对有力的翅膀。大模型在海量文本数据上进行预训练,学了一肚子的语言知识和语义表示。这些知识和表示,就可以直接用在各种自然语言处理任务上。

img

比如说,我们要做文本分类,把大模型在相关文本分类数据集上稍微调整一下,它就能快速适应,而且准确率还挺高。

大模型还推动了自然语言处理技术的创新。因为有了大模型,研究人员就开始琢磨新的算法、架构和应用场景。

img

像基于大模型的提示学习、少样本学习和零样本学习这些新技术,就算没有大量标注数据,模型也能完成任务,这可大大拓展了自然语言处理的应用范围呢。

(二)显著区别

从泛化性和通用性来看,大模型明显更胜一筹。

传统的自然语言处理,不同的任务常常得用不同的模型,就像一把钥匙开一把锁。但大模型就像一把万能钥匙,一个模型就能处理好多不同的自然语言处理任务。

比如 BERT 可以用于很多自然语言理解的任务训练,而 GPT 呢,用户只要在提示词里给它一点相关例子,它就能快速明白任务,然后给出回答,这泛化能力是不是很强?

在模型训练和应用方式上,传统自然语言处理模型通常要针对具体任务,人工做大量的特征提取和模型调整工作。

但大模型是在大规模无监督数据上先预训练,学会通用的语言表示,然后在具体任务上,要么稍微微调一下,要么直接通过提示词让它生成结果,这样一来,人工干预和标注成本就大大降低了。

四、入行规划指南

如果你想进入大模型和自然语言处理这个充满魅力的领域,可以参考以下学习规划。

(一)扎实的知识储备

数学基础:

线性代数、概率论、数理统计最优化方法这些数学知识,在大模型训练的时候特别重要。比如在调整模型参数时,就得用到矩阵运算、梯度下降这些方法。

编程语言:

Python 一定要学好,它在人工智能和自然语言处理领域应用超级广泛,有很多好用的库和框架,像 PyTorch、TensorFlow,用它们来开发模型和做实验。另外,了解一下C++等其他编程语言,对理解算法效率和底层实现很有帮助。

机器学习与深度学习:

要系统地学习机器学习深度学习的基本概念、算法和模型。常见的机器学习算法,像决策树、支持向量机、朴素贝叶斯。

还有深度学习模型,比如神经网络、卷积神经网络、循环神经网络,都要深入了解它们的原理、训练方法和应用场景。

自然语言处理:

把自然语言处理的基础理论和技术学好,像词法分析、句法分析、语义分析、文本分类、情感分析、机器翻译这些任务的原理和方法都得掌握,还要时刻关注自然语言处理领域的最新研究成果和发展趋势。

(二)丰富的实践经验

参与开源项目:

HuggingFace、Langchain这些开源项目,大家要积极参与。在里面贡献代码,学习别人的优秀经验,这样就能深入了解大模型和自然语言处理技术在实际项目中的应用,积累宝贵的项目经验,还能认识很多同行。

参加竞赛:

Kaggle、天池等平台上有各种人工智能和自然语言处理竞赛,大家去参加参加。竞赛能锻炼大家解决问题的能力、优化算法的能力,还能培养团队协作能力,而且能接触到真实的数据集和复杂的任务场景,对提升实战水平很有帮助。

自主实践:

平时业余时间,自己也可以动手实践哦。比如尝试搭建一个简单的文本分类器、情感分析系统或者聊天机器人,通过实践,能把理论知识理解得更透彻,还能培养自己的动手能力和创新思维。

(三)关注行业动态与前沿研究

  • 阅读专业文献:定期去看看人工智能和自然语言处理领域的顶级学术期刊和会议论文,像ACL、NeurIPS、ICML 这些,了解最新的研究成果和技术趋势,这样就能站在行业前沿啦。
  • 关注行业资讯:平时多关注行业媒体、博客,还有社交媒体上的专业人士,及时获取行业动态、技术进展和应用案例。像 OpenAI、Google AI、微软研究院这些机构的官方发布,以及一些知名 AI 博主的分享,都很值得关注。
  • 参加学术会议和研讨会:要是有机会,去参加线下或者线上的学术会议、研讨会和技术讲座,和专家学者、行业从业者面对面交流,能拓宽自己的视野,深入了解行业的发展方向和最新趋势。

看到这的小伙伴肯定已经开始摩拳擦掌,准备大干一场了

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值