Sora、ChatGPT、GPT、LLM、AIGC、GenAI、AGI... 这些 AI 热词你都分得清吗?

在当今数字化时代,人工智能(AI)技术发展迅猛,相关热词层出不穷。从强大的聊天机器人 ChatGPT,到先进的文本生成模型 GPT,再到代表未来趋势的通用人工智能 AGI,这些术语充斥在科技新闻、社交媒体和日常对话中。对于普通大众而言,这些热词往往令人眼花缭乱,难以准确把握其确切含义。今天,我们就来深入剖析这些 AI 热词,揭开它们神秘的面纱。请添加图片描述

1、 AGI(通用人工智能)

  • 定义:人工智能的终极目标,指具备与人类相当或超越人类水平的综合智能系统,能处理各类智力任务。
  • 特点:具有全面智能能力,可在多领域迁移知识,执行多种复杂任务,如医疗诊断、工程设计、艺术创作、科学研究等。
  • 发展现状与争议:目前尚未实现,众多机构和企业积极探索;其发展引发对就业、伦理、社会影响等方面的广泛讨论 。

2、 GenAI(生成式人工智能)

  • 定义:人工智能分支,专注通过学习数据模式特征生成全新创造性内容。
  • 技术架构:主要基于生成对抗网络(GAN)、变分自编码器(VAE)、Transformer等,如GAN通过生成器和判别器对抗训练生成逼真数据。
  • 应用场景:广泛应用于艺术创作、设计、娱乐等领域,助力创意产业发展,激发创作潜力。

3、 AIGC(人工智能生成内容)

  • 定义:利用人工智能技术生成文本、图像、音频、视频等各类内容。
  • 应用领域:文本生成方面,可撰写多种类型文章;图像生成领域,能依文本描述生成图像;音频生成可合成语音、音乐;视频生成如Sora可制作高质量视频。
  • 影响与问题:提高内容创作效率,为创作者提供灵感,应用广泛;但带来内容真实性、版权、伦理等问题。

4、 LLM(大语言模型)

  • 定义:基于深度学习,具有大规模参数和复杂计算结构的人工智能语言模型。
  • 能力与应用:能处理海量数据,完成文本生成、问答、翻译、摘要等自然语言处理任务;为智能客服、写作、翻译等应用提供支持,促进人机语言交互自然流畅。
  • 典型代表:除GPT系列外,还包括Google的BERT、字节跳动的云雀模型等。

5、 GPT

  • 定义:OpenAI开发的一系列基于Transformer架构的生成式预训练语言模型。
  • 发展历程:从2018年的GPT-1开启自然语言处理预训练模型时代,到GPT-2提升词汇量和文本生成质量,GPT-3实现模型规模和性能飞跃,再到GPT-4成为多模式模型,以及2024年推出的GPT-5进一步提升性能。
  • 训练与应用:在大规模文本数据上无监督预训练学习语言规律和语义,再针对特定任务微调,应用于文本生成、问答、翻译等领域。

6、 ChatGPT

  • 定义:OpenAI于2022年11月30日发布的聊天机器人模型,基于GPT-3.5和GPT-4等大模型构建。
  • 发展与功能:发布后迅速走红,用户活跃量增长惊人;可与用户对话交互,完成代码输出、文字翻译、撰写文章等任务;不断更新迭代,开放更多功能,如数据分析、图像分析、搜索功能等,不同订阅用户享有不同的GPT模型使用权限。
  • 训练方式:采用基于人类反馈的强化学习(RLHF),通过人工撰写问答对、标注排名、设定奖励机制微调模型,使输出贴合用户意图。

7、 Sora

  • 定义:OpenAI在2024年2月16日发布、12月10日正式推出的首个文本生成视频模型,是实现通用人工智能(AGI)的重要里程碑。
  • 功能与应用:继承Dall・E-3画质和指令遵循能力,能依文本提示生成高保真视频,还可基于静态图像生成视频;支持视频扩展、帧填充,能生成含动态摄像机运动的视频,可用于制作各类创意视频。
  • 局限性:难以模拟复杂场景物理原理,存在物体数量变化、空间细节混淆等问题,对随时间变化事件的描述不够精确。

8、总结

Sora、ChatGPT、GPT、LLM、AIGC、GenAI、AGI 这些 AI 热词,各自代表了人工智能领域不同的技术方向和发展阶段。它们相互关联、相互促进,共同推动着人工智能技术不断向前发展,深刻地改变着我们的生活和社会 。了解这些热词的含义和背后的技术原理,有助于我们更好地把握人工智能的发展趋势,在这个快速变化的时代中更好地适应和利用 AI 技术带来的机遇 。​

9、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值