ZCMUCZX的博客

学习的脚步

ZCMU-1347-又是斐波那契数列

1347: 又是斐波那契数列

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 377  Solved: 120
[Submit][Status][Web Board]

Description

在数学中斐波那契数列F是这样定义的:F(n)=F(n-1)+F(n-2),F(0)=1,F(1)=1。现在我有另外一个序列G,G(n)=G(n-1)+G(n-2),G(0)=1,G(1)=t(t>=1)。
你的任务对于给定的i,G(i)和j输出G(j)。

Input

多组测试数据,对于每组测试数据包含三个正整数i,G(i),j。1 <= i,j <=20, G(i)<100000。

Output

对于每组数据,如果t存在输出对应的G(j)的值,否则输出-1。

Sample Input

1 1 2
3 5 4
3 4 6
12 17801 19

Sample Output

28
-1
516847



【解析】
规律题,我们把前面几项列出来之后会发现G1=t,G2=1+t,G3=2t+1,G4=3t+2,G5=5t+3,G6=8t+5,我们发现n项的系数等于
前面两项的系数相加,而常数项就等于前一项的系数,而且这里,i,j都是小于等于20的所以那就很好算了。。
#include <cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int main()
{
    int n,m,k,i,b,c,flag;
    long long p;
    int a[100010]={0};
    a[0]=0;
    a[1]=1;
    while(~scanf("%d%d%d",&n,&m,&k))
    {
        flag=0;
        for(i=2;i<=22;i++)
        {
            a[i]=a[i-1]+a[i-2];
        }
        b=a[n];
        c=a[n-1];
        p=m-c;
        if(p%b!=0||p==0||p<0)
        {
            flag=1;
        }
        else
        {
            p=p/b;
            p=p*a[k]+a[k-1];
        }
        if(flag==0)
            printf("%lld\n",p);
        else
            printf("-1\n");
    }
  return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ZCMUCZX/article/details/53997404
个人分类: ACM
上一篇ZCMU-1345-国际象棋
下一篇ZCMU-1348-整数划分
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭