1317-亲和数 ZCMU

本文介绍了一种通过编程判断两个数是否为亲和数的方法。亲和数是指两个数中任意一个数的所有真约数之和等于另一个数的情况。文中提供了一个C++实现的示例代码,用于解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

古希腊数学家毕达哥拉斯在自然数研究中发现,220的所有真约数(即不是自身的约数)之和为:
1+2+4+5+10+11+20+22+44+55+110=284。而284的所有真约数为1、2、4、71、 142,加起来恰好为220。人们对这样的数感到很惊奇,并称之为亲和数。一般地讲,如果两个数中任何一个数都是另一个数的真约数之和,则这两个数就是亲和数。 
你的任务就编写一个程序,判断给定的两个数是否是亲和数

Input

输入数据第一行包含一个数M,接下有M行,每行一个实例,包含两个整数A,B; 其中 0 <=A,B <=600000 ;

Output

对于每个测试实例,如果A和B是亲和数的话输出YES,否则输出NO。

Sample Input

2

220 284

100 200

Sample Output

YES

NO

思路:分别求出A,B两个整数的真约数,看两个数中任何一个数是否都是另一个数的真约数之和

代码:

#include<bits/stdc++.h>
using namespace std;
int cal(int x)
{
    int sum=0;
    for(int i=1;i<=x/2;i++)
        if(x%i==0)
          sum+=i;
    return sum;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int A,B;
        scanf("%d%d",&A,&B);
        int ans1=cal(A);
        int ans2=cal(B);
        if(A==ans2&&B==ans1)
            printf("YES\n");
        else
            printf("NO\n");
    }
    return 0;
}

 

当前提供的引用内容并未提及 ZCMU OJ 的目编号 52131。因此无法直接通过现有引用获取其具体细节或解决方案[^4]。 通常情况下,在解决 OJ 平台上的问时,可以遵循以下方法来分析和解决问: ### 目解析流程 #### 据结构与算法的选择 对于未明确描述的目,可以根据常见型推测可能涉及的据结构和算法。例如: - 如果涉及到字符串操作,则需考虑大小写敏感性以及特殊字符处理[^1]。 - 若为图论相关问(如 Domino 倒下模拟),则可采用并查集或其他连通性算法进行求解[^2]。 - 对于最大子组和等问,动态规划可能是有效的工具之一[^3]。 以下是基于假设的一个通用框架用于解决潜在类似的编程挑战: ```python def solve_problem(input_data): """ 解决特定输入据下的计算逻辑 参: input_data (list): 输入参列表 返回值: result : 计算后的结果 """ # 初始化变量 n = len(input_data) # 动态规划表初始化 dp = [0]*n dp[0] = max_sum = input_data[0] for i in range(1,n): # 更新状态转移方程 dp[i] = max(dp[i-1]+input_data[i], input_data[i]) # 跟踪全局最优解 if dp[i]>max_sum: max_sum=dp[i] return max_sum ``` 此代码片段仅作为示范用途,并不一定适用于实际编号为 `52131` 的目情境。 ### 注意事项 当面对新类型的竞赛目时,请务必仔细阅读原说明文档,理解边界条件、时间复杂度需求等因素后再着手编写程序实现方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值