Description
有一个n*m的矩阵,矩阵中的每个格子都涂有颜色。不同的颜色由不同的大写字母表示。如果这个矩阵中至少有一个全部由一种颜色组成的环,那么称这个矩阵是一个完美的矩阵。这个条件等价于存在一个格子的序列d1, d2, d3, …, dk满足下列条件:
1. 对于所有的di和dj,若i != j,那么di != dj。
2. K >= 4。
3. 所有的格子都属于同一种颜色。
4. 对于所有的1 <= I <= k – 1,di 都和di + 1相邻,当然dk 和d1也必须相邻,相邻的意思是两个格子有一条公共边。
对于一个给定的矩阵,你需要输出这个矩阵是不是完美的矩阵。
Input
输入包含多组测试数据。每组测试数据的第一行有两个正整数n,m(2 <= n, m <= 50),代表这个矩阵的大小。接下来n行,每行有m个大写字母,代表这个矩阵。
Output
对于每组测试数据,输出一行,如果这个矩阵的完美矩阵则输出“Yes”,否则输出“No”。
Sample Input
3 4
AAAA
ABCA
AAAA
3 4
AAAA
ABCA
AADA
4 4
YYYR
BYBY
BBBY
BBBY
7 6
AAAAAB
ABBBAB
ABAAAB
ABABBB
ABAAAB
ABBBAB
AAAAAB
2 13
ABCDEFGHIJKLM
NOPQRSTUVWXYZ
思路
矩阵是是否存在环就看在深搜的过程中从grid[i][j]出发过程中是否有存在步长>=4&&能回到原来的出发点的位置的情况
代码
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
char grid[60][60];
int dir[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
int mark[60][60],x,y,sign,n,m;
void DFS(int u,int v,char ch,int step)
{
if(sign==1) return ;
for(int i=0;i<4;i++)
{
int next_x=u+dir[i][0];
int next_y=v+dir[i][1];
if(next_x<1||next_x>n||next_y<1||next_y>m)
continue;
if(next_x==x&&next_y==y&&step>=4&&grid[next_x][next_y]==ch)
{
sign=1; return ;
}
if(!mark[next_x][next_y]&&grid[next_x][next_y]==ch)
{
mark[next_x][next_y]=1;
DFS(next_x,next_y,ch,step+1);
mark[next_x][next_y]=0;
}
}
return ;
}
int main()
{
int i,j;
while(~scanf("%d %d",&n,&m))
{
for(i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>grid[i][j];
}
}
sign=0;
memset(mark,0,sizeof(mark));
for(i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
x=i; y=j;
mark[i][j]=1;
DFS(i,j,grid[i][j],1);
mark[i][j]=0;
if(sign) break;
}
if(sign) break;
}
if(!sign)
printf("No\n");
else
printf("Yes\n");
}
return 0;
}
Sample Output
Yes
No
Yes
Yes
No