ZCMU1728 B(深搜)

Description

有一个n*m的矩阵,矩阵中的每个格子都涂有颜色。不同的颜色由不同的大写字母表示。如果这个矩阵中至少有一个全部由一种颜色组成的环,那么称这个矩阵是一个完美的矩阵。这个条件等价于存在一个格子的序列d1, d2, d3, …, dk满足下列条件:

1.       对于所有的di和dj,若i != j,那么di != dj。

2.       K >= 4。

3.       所有的格子都属于同一种颜色。

4.       对于所有的1 <= I <= k – 1,di 都和di + 1相邻,当然dk 和d1也必须相邻,相邻的意思是两个格子有一条公共边。

对于一个给定的矩阵,你需要输出这个矩阵是不是完美的矩阵。

Input

输入包含多组测试数据。每组测试数据的第一行有两个正整数n,m(2 <= n, m <= 50),代表这个矩阵的大小。接下来n行,每行有m个大写字母,代表这个矩阵。

Output

对于每组测试数据,输出一行,如果这个矩阵的完美矩阵则输出“Yes”,否则输出“No”。

Sample Input

3 4

AAAA

ABCA

AAAA

3 4

AAAA

ABCA

AADA

4 4

YYYR

BYBY

BBBY

BBBY

7 6

AAAAAB

ABBBAB

ABAAAB

ABABBB

ABAAAB

ABBBAB

AAAAAB

2 13

ABCDEFGHIJKLM

NOPQRSTUVWXYZ

思路

矩阵是是否存在环就看在深搜的过程中从grid[i][j]出发过程中是否有存在步长>=4&&能回到原来的出发点的位置的情况

代码

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
char grid[60][60];
int dir[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
int mark[60][60],x,y,sign,n,m;
void DFS(int u,int v,char ch,int step)
{
    if(sign==1) return ;
    for(int i=0;i<4;i++)
    {
        int next_x=u+dir[i][0];
        int next_y=v+dir[i][1];
        if(next_x<1||next_x>n||next_y<1||next_y>m)
            continue;
        if(next_x==x&&next_y==y&&step>=4&&grid[next_x][next_y]==ch)
        {
            sign=1; return ;
        }
        if(!mark[next_x][next_y]&&grid[next_x][next_y]==ch)
        {
            mark[next_x][next_y]=1;
            DFS(next_x,next_y,ch,step+1);
            mark[next_x][next_y]=0;
        }
    }
    return ;
}
int main()
{
    int i,j;
    while(~scanf("%d %d",&n,&m))
    {
        for(i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                cin>>grid[i][j];
            }
        }
        sign=0;
        memset(mark,0,sizeof(mark));
        for(i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                x=i; y=j;
                mark[i][j]=1;
                DFS(i,j,grid[i][j],1);
                mark[i][j]=0;
                if(sign) break;
            }
            if(sign) break;
        }
        if(!sign)
            printf("No\n");
        else
            printf("Yes\n");
    }
    return 0;
}

Sample Output

Yes

No

Yes

Yes

No

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值