实验目的:
进一步巩固函数的嵌套定义和调用的掌握
掌握函数的递归调用
题目一:
如果P是一年中第一天的人口数量,B是出生率,D是死亡率,年底的人口普查统计值通过下列公式给出:
人口增长率通过下列公式给出:
编写一个程序提示用户输入初始人口、出生率、死亡率和年数n。程序计算并打印n年后的人口统计数量。程序必须由下列函数组成。
A.growthRate():该函数用出生率和死亡率作为参数并返回人口增长率。
B.estimatedPopulation():该函数用当前人口、人口增长率和年数n作为参数,返回n年后的估算人口。
程序不应该接收负的出生率、负的死亡率和小于2的人口数量。
编写程序:
#include <iostream>
using namespace std;
float fum(float m, int n)
{
float t = 1;
for (int i = 1; i <= n; i++)
{
t *=1 + m;
}
return t;
}
float growthrate(float b, float d)
{
float r;
r = b - d;
return r;
}
long int estimatedpopulation(long int p, float a, float b, int n)
{
if (p < 2)
return 0;
else if (a < 0 || b < 0)
return 0;
else
return (int)p * fum(growthrate(a, b), n);
}
void main()
{
cout << "用户请分别输入初始人口,出生率,死亡率和年数N:";
int a, d;
float b, c;
cin >> a >> b >> c >> d;
if (a < 2||b < 0||c < 0)
cout << "程序接收负的出生率、负的死亡率和小于2的人口数量,请重新输入";
else
cout << "人口普查统计人数为:" << estimatedpopulation(a, b, c, d) << endl;
}
题目二
Hanoi(汉诺)塔问题。这是一个经典的数学问题:古代有一个梵塔,塔内有3个座A,B,C,开始时A座上有64个盘子,盘子大小不等,在的在下,小的在上(见下图)。
有一个老和尚想把这64个盘子从A盘移到C座,但每次只允许移动一个盘,且在移动过程中有3个座上都始终保持在大盘在下,小盘在上。在移动过程中可以利用B座,要求编写程序打印出移动的步骤。
编写程序:
#include <iostream>
using namespace std;
int main()
{
void hanoi(int n, char one, char two, char three);
int m;
cout << "input the number of diskes:";
cin >> m;
cout << "The steps of moving " << m << " disks:" << endl;
hanoi(m, 'A', 'B', 'C');
return 0;
}
void hanoi(int n, char one, char two, char three)
//将n个盘从one座借助two座,移到three座
{
void move(char x, char y);
if (n == 1) move(one, three);
else
{
hanoi(n - 1, one, three, two);
move(one, three);
hanoi(n - 1, two, one, three);
}
}
void move(char x, char y)
{
cout << x << "-->" << y << endl;
}