机器学习经典算法之线性模型

线性模型

基本公式

y ^ = w 0 + w 1 x 1 + ⋯ + w n x n = W T x \hat y=w_0+w_1x_1+\cdots+w_nx_n=W^Tx y^=w0+w1x1++wnxn=WTx

优点:

1.模型简单,易于建模。

2.许多复杂的非线性模型都是在线性模型的基础上添加层级结构或者高维映射而来。

3.W取值可直观地表示特征属性在预测过程中的影响程度,所以具有很好的解释性。

常用损失函数

M S E = 1 m ∑ i = 1 m ( y i − y ^ i ) 2 = 1 m ∑ i = 1 m ( y i − W T x i ) 2 = 1 m ( Y − W T X ) 2 = 1 m ( Y − W T X ) T ( Y − W T X ) MSE=\frac{1}{m}\sum_{i=1}^m(y_i-\hat y_i)^2=\frac{1}{m}\sum_{i=1}^m(y_i-W^Tx_i)^2=\frac{1}{m}(Y-W^TX)^2=\frac{1}{m}(Y-W^TX)^T(Y-W^TX) MSE=m1i=1m(yiy^i)2=m1i=1m(yiWTxi)2=m1(YWTX)2=m1(YWTX)T(YWTX)

极大似然的角度进行思考,一个随机变量发生的概率符合高斯分布,高斯分布的分布密度函数为 f ( x ) = 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma^2}) f(x)=2π σ1exp(2σ2(xμ)2)公式中 x x x为实际值, μ \mu μ为预测值,将样本 i i i带入得 p ( y i ∣ x i ; W ) = 1 2 π σ e x p ( − ( y i − W T x i ) 2 2 σ 2 ) p(y_i|x_i;W)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(y_i-W^Tx_i)^2}{2\sigma^2}) p(yixi;W)=2π σ1exp(2σ2(yiWTxi)2),由于各个样本相互独立,故 p ( Y ∣ X ; W ) = ∏ i = 1 m 1 2 π σ e x p ( − ( y i − W T x i ) 2 2 σ 2 ) p(Y|X;W)=\prod_{i=1}^m\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(y_i-W^Tx_i)^2}{2\sigma^2}) p(YX;W)=i=1m2π

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值