JAVA线程池详解

本文详细介绍了线程池的原理、参数设置、工作队列策略,探讨了四种拒绝策略,并提供创建线程池的多种方式对比,以及如何根据业务场景定制线程池。实例演示了如何使用单例模式创建复用线程池和判断任务执行完毕的方法,适合处理并发任务的性能优化。
摘要由CSDN通过智能技术生成

一.简介

​ 线程池:一种使用线程的模式,存放了很多可以复用的线程,对线程统一管理。我们可以使用new的方式去创建线程,但若是并发线程太高,每个线程执行时间不长,这样频繁的创建销毁线程是比较耗费资源的,线程池就是用来解决此问题的。

1.使用线程池的优点

(1)降低资源的消耗:线程可以重复使用,不需要在创建线程和消耗线程上浪费资源;

(2)提高响应速度:任务到达时,线程可以复用已有的线程,及时响应;

(3)可管理性:无限制的创建线程会降低系统效率,线程池可以对线程进行管理、监控、调优。

二.线程池参数说明

​ ThreadPoolExecutor是线程池最核心的一个类,我们来看它参数最完整的构造类,代码如下:

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)
参数名含义解释
corePoolSize线程池核心线程数默认情况下,线程池中是没有线程的,当还没有一次任务到达过时,初始化的线程数为0,当有任务初次来临,直接创建corePoolSize个线程;核心线程生命周期无限,即使空闲也不会死亡。
maximumPoolSize线程池能创建的最大线程数当核心线程数已满,并且工作队列也已经存放满,才会去判断当前线程数是否小于maximumPoolSize,小于则继续创建线程处理任务,等于则执行拒绝策略。
keepAliveTime闲置超时时间当线程池中的线程数大于corePoolSize时,此值才生效,即大于corePoolSize的线程在经过keepAliveTime的时间依然没有任务执行,则销毁线程。
unit超时时间单位参数keepAliveTime的单位。
workQueue工作队列当核心线程数已满时,新提交的任务放到任务队列中(前提是任务队列没满)。
threadFactory线程池创建新线程的工厂创建线程,一般默认即可。
handler线程池达到饱和之后的拒绝策略当线程数达到最大线程maximumPoolSize后(此时队列已经存满),再有新任务提交,执行的处理策略。

三.WorkQueue工作队列说明

​ workQueque决定了缓存任务的排队策略,对于不同的业务场景,我们可以选择不同的工作队列。类型为BlockingQueue,我们看下源码,哪些类实现了BlockingQueue接口。
在这里插入图片描述
我们来说说以下常用的四种。

1.SynchronousQueue

​ 没有容量,直接提交队列,是无缓存等待队列,当任务提交进来,它总是马上将任务提交给线程去执行,如果线程已经达到最大,则执行拒绝策略;所以使用SynchronousQueue阻塞队列一般要求maximumPoolSize为无界(无限大),避免线程拒绝执行操作。从源码中可以看到容量为0:

   //是否为空,直接返回的true
   public boolean isEmpty() {
        return true;
    }

    //队列大小为0
    public int size() {
        return 0;
    }

2.LinkedBlockingQueue

默认情况下,LinkedBlockingQueue是个无界的任务队列,默认值是Integer.MAX_VALUE,当然我们也可以指定队列的大小。从构造LinkedBlockingQueue源码中可以看出它的大小指定方式:

   //默认构造函数,大小为Integer最大
    public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }

   //也可以指定大小
    public LinkedBlockingQueue(int capacity) {
        if (capacity <= 0) throw new IllegalArgumentException();
        this.capacity = capacity;
        last = head = new Node<E>(null);
    }

为了避免队列过大造成机器负载,或者内存泄漏,我们在使用的时候建议手动传一个队列的大小。内部分别使用了takeLock和putLock对并发进行控制,添加和删除操作不是互斥操作,可以同时进行,这样大大提高了吞吐量。源码中有定义这两个锁:

   //获取元素使用的锁
   private final ReentrantLock takeLock = new ReentrantLock();

   //加入元素使用的锁
   private final ReentrantLock putLock = new ReentrantLock();

  //获取元素时使用到takeLock锁
  public E peek() {
        if (count.get() == 0)
            return null;
        final ReentrantLock takeLock = this.takeLock;
       //加锁操作
        takeLock.lock();
        try {
            //获取元素
            Node<E> first = head.next;
            if (first == null)
                return null;
            else
                return first.item;
        } finally {
            //解锁
            takeLock.unlock();
        }
    }
    
    //添加元素到队列中使用putLock锁
    public boolean offer(E e) {
        if (e == null) throw new NullPointerException();
        final AtomicInteger count = this.count;
        if (count.get() == capacity)
            return false;
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        //加锁操作
        putLock.lock();
        try {
            //队列中存放的数据小于队列设置的值
            if (count.get() < capacity) {
                //添加元素
                enqueue(node);
                c = count.getAndIncrement();
                if (c + 1 < capacity)
                    notFull.signal();
            }
        } finally {
            //解锁
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
        return c >= 0;
    }

3.ArrayBlockingQueue

可以理解为有界的队列,创建的时候必须要指定队列的大小,从源码可以看出构造的时候要传递值:

    public ArrayBlockingQueue(int capacity) {
        this(capacity, false);
    }

4.DelayQueue

是一个延迟队列,无界、队列中每个元素都有过期时间,当从队列获取元素时,只有过期的元素才会出队,而队列头部是最早过期的元素,若是没有过期,则进行等待。利用这个特性,我们可以用来处理定时任务调用的场景,例如订单过期未支付自动取消,设置一个在队列中过期的时间,过期了后,再去查询订单的状态,若是没支付,则调用取消订单的方法。

//获取元素
public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            for (;;) {
                //获取元素
                E first = q.peek();
                if (first == null)
                    //进入等待
                    available.await();
                else {
                    //获取过期时间
                    long delay = first.getDelay(NANOSECONDS);
                    if (delay <= 0)
                        //小于等于0则过期,返回此元素
                        return q.poll();
                    first = null; 
                    if (leader != null)
                        available.await();
                    else {
                        Thread thisThread = Thread.currentThread();
                        leader = thisThread;
                        try {
                            //设置还需要等待的时间
                            available.awaitNanos(delay);
                        } finally {
                            if (leader == thisThread)
                                leader = null;
                        }
                    }
                }
            }
        } finally {
            if (leader == null && q.peek() != null)
                available.signal();
            lock.unlock();
        }
    }

四.handler四种拒绝策略说明

​ 触发任务拒接的条件:当前同时运行的线程数量达到最大线程数maximumPoolSize,并且队列也放满了任务,即触发饱和拒绝策略。ThreadPoolExecutor中定义了四个拒绝策略内部类。

1.DiscardPolicy

当任务添加到线程池中被拒绝时,直接丢弃任务,不抛出异常,源码:

public static class DiscardPolicy implements RejectedExecutionHandler {

        public DiscardPolicy() { }


        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
    }

2.AbortPolicy

当任务添加到线程池中被拒绝时,直接丢弃任务,并抛出RejectedExecutionException异常,源码:

  public static class AbortPolicy implements RejectedExecutionHandler {

        public AbortPolicy() { }

        //不处理,直接抛出异常
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }

3.DiscardOldestPolicy

当任务添加到线程池中被拒绝时,判断线程池是否还在运行,然后获取队列,让队首(最久)的元素出队,直接抛弃,把当前任务添加执行,不出意外还是添加到队列中,除非当前这会好几个线程执行完,线程数小于了corePoolSize。

public static class DiscardOldestPolicy implements RejectedExecutionHandler {

        public DiscardOldestPolicy() { }

        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            //线程池还没有销毁停止
            if (!e.isShutdown()) {
                //获取队列,并让队列头(最久)的任务出队,丢弃队头
                e.getQueue().poll();
                //执行新任务,新任务再添加到队列中
                e.execute(r);
            }
        }
    }

4.CallerRunsPolicy

当任务添加到线程池中被拒绝时,判断线程池是否还在运行,直接在主线程中运行此任务,即在调用execute或者submit的方法中执行,不再使用线程池来处理此任务。

public static class CallerRunsPolicy implements RejectedExecutionHandler {

        public CallerRunsPolicy() { }

        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            //线程池还在运行
            if (!e.isShutdown()) {
                //让主进程来运行此任务
                r.run();
            }
        }
    }

为了说明这一点,来看一个demo:

    public static void main(String[] args) {
        //最大线程数设置为2,队列最大能存2,使用主线程执行的拒绝策略
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2,2,10, TimeUnit.SECONDS,new LinkedBlockingQueue<>(2),new ThreadPoolExecutor.CallerRunsPolicy());

        //此时有6个任务,最大线程+队列能处理4个,主线程需要处理6-4=2个
        for(int i = 0; i < 6;i ++) {
            Runnable run = new Runnable(){
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                        System.out.println("执行当前任务的线程:"+Thread.currentThread().getName());
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
            threadPoolExecutor.execute(run);
        }
    }

执行结果:
在这里插入图片描述

五.线程池处理任务策略说明

1.如果当前线程池中的线程数量小于corePoolSize,则会创建一个线程执行此任务;

2.如果当前线程池中的线程数量大于corePoolSize,则会尝试将其添加到队列中,若添加成功,则该任务会排队等待线程将其取出进行执行;若队列中已达最大值,则添加失败,则会尝试创建新的线程执行这个任务;

3.如果当前线程池中的线程数量已经达到maximumPoolSize,则尝试创建新的线程结果为false,会采取任务拒绝策略;

4.如果线程池中线程数量大于corePoolSize,则当空闲时间超过keepAliveTime的线程,将会被终止,直到线程池数量不大于corePoolSize为止。

当提交一个新任务后,线程池的处理流程图:
在这里插入图片描述

来看当添加一个任务到线程池的源码:

   public void execute(Runnable command) {
        //执行的任务为空,直接抛出异常
        if (command == null)
            throw new NullPointerException();
       
        //ctl:AtomicInteger类型,获取当前线程池中的线程数
        int c = ctl.get();
        //当前线程数小于核心线程数,直接创建线程执行任务
        if (workerCountOf(c) < corePoolSize) {
            //创建线程执行任务,从wc >= (core ? corePoolSize : maximumPoolSize)可以看出,true代表创建核心线程,false代表创建非核心线程
            if (addWorker(command, true))
                //创建线程成功,直接返回
                return;
            //没成功,重新获取当前线程数
            c = ctl.get();
        }
       //线程池还是运行状态、并且把任务添加到队列中成功
        if (isRunning(c) && workQueue.offer(command)) {
            //获取下当前线程数
            int recheck = ctl.get();
            //若是线程池不运行了,则把当前添加的任务移出
            if (! isRunning(recheck) && remove(command))
                //执行拒绝策略
                reject(command);
            //当前运行的线程数为0,
            else if (workerCountOf(recheck) == 0)
                //传递空参数,不进行创建
                addWorker(null, false);
        }
        //尝试创建线程,此时传递false,wc >= (core ? corePoolSize : maximumPoolSize),则看线程的上限匹配maximumPoolSize
        else if (!addWorker(command, false))
            //创建线程失败,执行拒绝策略
            reject(command);
    }

六.Executors四种创建线程池方式比较

​ Executors类(并发包)提供了4种创建线程池的方法,这些方法最终都是通过配置ThreadPoolExecutor的不同参数,来达到不同的线程管理效果。

1.newFixedThreadPool

创建一个定长的线程池,可控制最大并发数,超出的线程进行排队等待。源码如下:

    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

从源码可以看出此线程池的核心线程数、最大线程数都是nThreads,线程空闲回收时间配置也没有意义了,所以闲置时间给0,队列使用LinkedBlockingQueue无界的方式,当线程数达到nThreads后,新任务放到队列中。

下面是demo:

public static void main(String[] args)  {
    // 创建定长线程池
    ExecutorService newFixedThreadPool = Executors.newFixedThreadPool(4);
 
    for (int i = 0; i < 10; i++) {
        //创建任务
        Runnable runnable = new Runnable(){
            @Override
            public void run() {
                try {
                    Thread.sleep(3);
                      System.out.println("当前执行的线程为:"+Thread.currentThread().getName());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        };
        //任务添加到线程池
        newFixedThreadPool.execute(runnable);
    }
}

缺点:因为LinkedBlockingQueue是一个无界的队列,当线程数达到核心线程数时,新提交的任务会一直放到队列中,当任务很多的时候,会造成OOM(内存不足)。

2.newSingleThreadExecutor

​ 创建一个单线程池,它只会用唯一的工作线程来执行任务,超出的线程进行排队等待。源码如下:

    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

从源码可以看出此线程池的核心线程数、最大线程数都是1,线程空闲回收时间配置也没有意义了,所以闲置时间给0,队列使用LinkedBlockingQueue无界的方式,当线程数达到1后,新任务放到队列中。

下面是demo:

public static void main(String[] args)  {
    // 创建单线程-线程池,任务依次执行
    ExecutorService   newSingleThreadExecutor = Executors.newSingleThreadExecutor();
    for (int i = 0; i < 6; i++) {
        //创建任务
        Runnable runnable = new Runnable(){
            @Override
            public void run() {
                System.out.println("当前执行的线程为:"+Thread.currentThread().getName());
            }
        };
         //任务添加到线程池
        newSingleThreadExecutor.execute(runnable);
    }
}

缺点:因为LinkedBlockingQueue是一个无界的队列,当线程数达到核心线程数时,新提交的任务会一直放到队列中,当任务很多的时候,会造成OOM(内存不足)。

3.newCachedThreadPool

​ 创建一个可缓存的线程池,如果线程池长度大于处理需要,则根据线程空闲时间大于60s的会进行销毁;新任务添加进来,若是没有空闲的线程复用,则会立马创建一个线程来处理,因为使用的是无缓存队列。源码如下:

    public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>(),
                                      threadFactory);
    }

从源码可以看出此线程池的核心线程数为0、最大线程数为无界Integer.MAX_VALUE,线程空闲回收时间60S,队列使用SynchronousQueue无缓存的方式,当有任务添加,能复用之前线程则复用,没有空闲线程则创建新线程。

下面是demo:

public static void main(String[] args)  {
    // 创建可缓存线程池
    ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();
 
    for (int i = 0; i < 6; i++) {
        //创建任务
        Runnable runnable = new Runnable(){
            @Override
            public void run() {
                try {
                    Thread.sleep(6);
                   System.out.println("当前执行的线程为:"+Thread.currentThread().getName());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
               
            }
        };
         //任务添加到线程池
        newCachedThreadPool.execute(runnable);
    }
}

缺点:因为最大线程数为无界,当任务很多的时候,会创建大量线程,造成OOM(内存不足)。

4.newScheduledThreadPool

创建支持定时、周期任务的线程池。源码如下:

   //Executors类中
   public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
        return new ScheduledThreadPoolExecutor(corePoolSize);
    }

   //ScheduledThreadPoolExecutor类中
    public ScheduledThreadPoolExecutor(int corePoolSize) {
        super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
              new DelayedWorkQueue());
    }

从源码可以看出此线程池的核心线程数为corePoolSize、最大线程数为无界Integer.MAX_VALUE,线程空闲回收时间0S,当线程数大于corePoolSize时,有线程处理完任务后,接下来就进行销毁。队列使用DelayedWorkQueue延迟队列,可以设置延时时间,当元素达到延时时间,才从队列出队。

下面是demo:

public static void main(String[] args)  {
    // 创建支持定时线程池
    ScheduledExecutorService  newScheduledThreadPool = Executors.newScheduledThreadPool(2);
 
    for (int i = 0; i < 5; i++) {
        //创建任务
        Runnable runnable = new Runnable(){
            @Override
            public void run() {
                System.out.println("当前执行的线程为:"+Thread.currentThread().getName());
            }
        };
        //任务添加到线程池,延迟2秒后才能从队列中出队
        newScheduledThreadPool.schedule(runnable, 2, TimeUnit.SECONDS);
    }
}

缺点:因为最大线程数为无界,当任务很多的时候,会创建大量线程,造成OOM(内存不足)。

七.ThreadPoolExecutor方式创建线程池

​ 为了解决Executors提供的四种快速创建线程池出现的OOM(内存不足)问题,推荐使用ThreadPoolExecutor的方式,按业务、按需创建线程池。设置合理的corePoolSize、maximumPoolSize、keepAliveTime、workQueue、handler。

​ 如果我们设置的线程池数量太小的话,如果同一时间有大量任务需要处理,可能会导致大量任务在队列中等待,甚至出现OOM(内存不足),但是此时cpu没有得到充分的利用;如果我们设置的线程数太大,大量线程可能会存在同时挣抢CPU的情况,导致大量的上下文切换,影响CPU的执行效率。

​ 我们可以从这两点去考虑线程池的配置:

(1)cpu密集型任务,需要线程长时间进行复杂的运算,这种类型的任务需要少创建线程,过多的线程将会频繁引起上下文切换,降低任务处理速度。

(2)io密集型任务,由于线程并不是一直在运行,可能大部分时间在等待io读取/写入数据,增加线程数量可以提高并发度,尽可能多处理任务。

下面是demo:

    public static void main(String[] args) {
        //最大线程数设置为2,队列最大能存2,使用主线程执行的拒绝策略
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2,2,0, TimeUnit.SECONDS,new LinkedBlockingQueue<>(2),new ThreadPoolExecutor.CallerRunsPolicy());

        //此时有6个任务,最大线程+队列能处理4个,主线程需要处理6-4=2个
        for(int i = 0; i < 6;i ++) {
            Runnable run = new Runnable(){
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                        System.out.println("执行当前任务的线程:"+Thread.currentThread().getName());
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
            threadPoolExecutor.execute(run);
        }
    }

八.单例方式创建复用线程池

我们使用单例方式创建可复用的线程池,这样一次创建后,后续业务都使用此线程池,此线程池不关闭销毁,直到系统服务停止才销毁。来看使用内部静态类单例模式创建线程池:

public class MyThreadPool {

    //内部静态类构造
    private static class ThreadPoolHolder{
        private static ExecutorService threadPool = new ThreadPoolExecutor(6,
                10,
                30,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
    }

    public  MyThreadPool(){

    }

    public static ExecutorService getInstance(){
        return ThreadPoolHolder.threadPool;
    }
}

业务代码中直接使用:

        //从单例中获取到线程池资源
        ExecutorService threadPoolExecutor = MyThreadPool.getInstance();
        for(int i = 0; i < 6;i ++) {
            Runnable run = new Runnable(){
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                        System.out.println("执行当前任务的线程:"+Thread.currentThread().getName());
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
            threadPoolExecutor.execute(run);
        }

九.任务是否需要返回值

​ 执行的任务是否需要返回值,有些业务场景下,我们需要接收线程处理后的结果返回值。当不需要返回值的时候我们使用Runnable来创建一个任务,重写run方法,当需要接收返回值的时候,我们使用Callable来创建任务,重写call方法。具体来看看源码:

@FunctionalInterface
public interface Runnable {
    //没有返回值,也不抛出异常
    public abstract void run();
}

@FunctionalInterface
public interface Callable<V> {
    //有返回结果,处理有问题时抛出异常
    V call() throws Exception;
}

在把任务添加到线程池中也需要做区分,当不需要返回值时,直接使用execute方法添加任务;当需要接收返回值时,使用submit方法提交任务。具体来看源码:

  //execute没有返回值 
  public void execute(Runnable command) {}

  //submit使用泛型来接收返回值
  <T> Future<T> submit(Callable<T> task);

没有返回值的demo:

    public static void main(String[] args) {
        //最大线程数设置的为2,队列最大能存2,使用主线程执行的拒绝策略
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2,2,10, TimeUnit.SECONDS,new LinkedBlockingQueue<>(2),new ThreadPoolExecutor.CallerRunsPolicy());

        //此时有6个任务,最大线程+队列能处理4个,主线程需要处理6-4=2个
        for(int i = 0; i < 6;i ++) {
            Runnable run = new Runnable(){
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                        System.out.println("执行当前任务的线程:"+Thread.currentThread().getName());
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
            threadPoolExecutor.execute(run);
        }
    }

有返回值的demo:

    public static void main(String[] args) throws ExecutionException, InterruptedException {

        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2,2,10, TimeUnit.SECONDS,new LinkedBlockingQueue<>(2),new ThreadPoolExecutor.CallerRunsPolicy());

        List<Future<String>> result = new ArrayList<Future<String>>();
        for(int i = 0; i < 6;i ++) {
            Callable call = new Callable(){
                @Override
                public String call() throws Exception {
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    return "执行当前任务的线程:"+Thread.currentThread().getName();
                }
            };
            Future<String> objectFuture = threadPoolExecutor.submit(call);
            //此处不能直接等着输出返回值,若是直接在此处输出结果值,则线程池就变成串行化的了
           //System.out.println(objectFuture.get());
            //需要使用一个集合来接收各个线程的处理结果值
            result.add(objectFuture);
        }
        for(int i = 0;i < result.size() ;i++) {
            System.out.println(result.get(i).get());
        }
    }

注意:有返回值的情况,返回的结果值需要定义一个集合来接收,不能在submit提交任务后就等着输出返回值,或者调用返回值,若是有这样的操作,会使多线程的执行变成串行化,因为线程一提交完,程序就等着输出线程一的返回值,此时线程二提交,需要排队在线程一执行完输出结果后才会去执行。

十.判断线程池是否执行完毕

​ 在很多场景下,我们都需要判断线程池是否已经执行完所有的任务,只有执行完所有的任务,我们再接着往下执行其他处理,例如需要对线程池处理的所有数据进行二次计算或者汇总,都是需要判断线程池是否已经处理完任务。例如下面代码就是存在线程池还没有处理完,就执行了主线程的后续代码:

   public static void main(String[] args) throws ExecutionException, InterruptedException {

        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2,
                2,
                10,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(2),
                new ThreadPoolExecutor.CallerRunsPolicy());

        for(int i = 0; i < 6;i ++) {
            Runnable call = new Runnable(){
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                        System.out.println("执行当前任务的线程:"+Thread.currentThread().getName());
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
           threadPoolExecutor.execute(call);
        }
        System.out.println("所有任务执行完成");
    }

程序输出结果:
在这里插入图片描述
1.isTerminated

​ 我们可以使用线程池的终止状态(TERMINATED)来判断线程池的任务是否已经全部执行完,想让线程池的状态发生变化,我们需要调用关闭线程池shutdown的方法,不然线程池会一直处于RUNNING运行状态。

来看一个demo:

   public static void main(String[] args) throws ExecutionException, InterruptedException {

        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2,
                2,
                10,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(2),
                new ThreadPoolExecutor.CallerRunsPolicy());

        for(int i = 0; i < 6;i ++) {
            Runnable call = new Runnable(){
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                        System.out.println("执行当前任务的线程:"+Thread.currentThread().getName());
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
           threadPoolExecutor.execute(call);
        }
        //关闭线程池
        threadPoolExecutor.shutdown();
        while(!threadPoolExecutor.isTerminated()){  //如果没有中断就一直cas自旋等待
        }
        System.out.println("所有任务执行完成");
    }

分析之前先来看ThreadPoolExecutor中定义的线程池5个状态:
在这里插入图片描述
RUNNING:运行状态,可以处理任务;

SHUTDOWN:关闭状态,此时线程池不能接受新的任务,他会等待所有排队任务执行完毕;

STOP:阻断状态,此时线程不接受新的任务,不处理排队任务,并且尝试终止正在执行的任务;

TIDYING:整理状态,此时工作的线程为0,尝试执行终止线程池的钩子函数;

TERMINATED:终止状态,已完成线程池终止。

当执行线程池的shutdown()方法时,则线程池处于SHUTDOWN状态,此时线程池不能接受新的任务,它会等待所有的排队任务执行完毕;当调用了shutdownNow()方法时,则线程池处于STOP,此时线程池不能接受新的任务,并且会去尝试终止正在执行的任务。

2.getCompletedTaskCount

可以通过获取线程池的计划执行数、已执行完成数来判断线程池是否已执行完所有任务,如果计划执行数=已执行完成数,则线程池已经执行完成,否则未执行完成。

来看demo:

   public static void main(String[] args) throws ExecutionException, InterruptedException {

        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2,
                2,
                10,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(2),
                new ThreadPoolExecutor.CallerRunsPolicy());

        for(int i = 0; i < 6;i ++) {
            Runnable call = new Runnable(){
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                        System.out.println("执行当前任务的线程:"+Thread.currentThread().getName());
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
           threadPoolExecutor.execute(call);
        }
        //判断计划执行任务数与已经执行完任务数是否相等来控制
        while(threadPoolExecutor.getTaskCount() != threadPoolExecutor.getCompletedTaskCount()){
        }
        System.out.println("所有任务执行完成");
    }

getTaskCount():获取计划执行的任务总数,因为线程和任务总是动态变化的,有可能在调用此方法的时候并发新加入了任务,因此返回的值只是一个近似值;

getCompletedTaskCount():获取已经完成任务的总数,因为线程和任务总是动态变化的,有可能在调用此方法的时候并发完成了任务,因此返回的值只是一个近似值。

3.CountDownLatch

相当于计数器,我们创建一个包含N个任务的计数器,当有任务完成时,计数器减1,直到计数器减为0时,代表所有任务都执行完成了。CountDownLatch创建之后,只能使用一次,不能重复使用。

来看demo:

  public static void main(String[] args) throws ExecutionException, InterruptedException {

        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2,
                2,
                10,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(2),
                new ThreadPoolExecutor.CallerRunsPolicy());
        //创建一个计数器
        CountDownLatch countDownLatch = new CountDownLatch(6);
        for(int i = 0; i < 6;i ++) {
            Runnable call = new Runnable(){
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                        System.out.println("执行当前任务的线程:"+Thread.currentThread().getName());
                        //计数器减1
                        countDownLatch.countDown();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
           threadPoolExecutor.execute(call);
        }
        //阻塞等待,计数器的数量为0,才往下执行
        countDownLatch.await();
        System.out.println("所有任务执行完成");
    }

countDownLatch.countDown():计数器减去1;

countDownLatch.await():阻塞等待,计数器的数量为0,才往下执行,其它处理业务代码可以在await()方法之后执行。

4.CyclicBarrier

与CountDownLatch类似,可以理解为一个可以重复使用的循环计数器,可以调用reset方法将自己重置为初始状态。

来看demo:

    public static void main(String[] args) throws ExecutionException, InterruptedException, BrokenBarrierException {

        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10,
                10,
                10,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(10),
                new ThreadPoolExecutor.CallerRunsPolicy());
        //创建一个计数器
        CyclicBarrier cyclicBarrier = new CyclicBarrier(6, new Runnable() {
            @Override
            public void run() {
                System.out.println("所有任务执行完成");
            }
        });
        for(int i = 0; i < 6;i ++) {
            Runnable call = new Runnable(){
                @Override
                public void run() {
                    try {
                        Thread.sleep(1);
                        System.out.println("执行当前任务的线程:"+Thread.currentThread().getName());
                        cyclicBarrier.await();
                    } catch (InterruptedException | BrokenBarrierException e) {
                        e.printStackTrace();
                    }
                }
            };
           threadPoolExecutor.execute(call);
        }
    }

构造方法可以传递两个参数,第一个是计数器的数量,第二个是当计数器为0时,执行的事件回调方法;调用await方法时,计数器减1,线程阻塞,当计数器减为0后,才放这些线程继续往下执行,同一批次通过栅栏。

十一.项目实战使用案例

​ 根据查询到需要处理数据的条数,来建立合适的线程池,使用CountDownLatch标识数据是否处理完。

  1. service层
private Object getItemList(DoravisPages doravisPages) throws Exception {
        List<xx> itemIdList = doravisPages.getItemIdList();  //条目id集合
        int itemNum = itemIdList.size();
        int corePoolSize = 15;
        int maximumPoolSize = corePoolSize;
        BlockingQueue<Runnable> workQueue = null;
        if(itemNum < corePoolSize) {   //数量小于核心线程数
            corePoolSize = itemNum;
            maximumPoolSize = itemNum;
            workQueue =  new SynchronousQueue<Runnable>();    //无缓存队列
        } else {
            workQueue = new LinkedBlockingDeque<>(itemNum-corePoolSize);   //指定缓冲队列大小,大小为item数量-核心线程数
        }

        //拒接策略都是主线程执行(不能丢数据),上面的配置要求不会存在拒接的情况
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(corePoolSize, maximumPoolSize,
                60, TimeUnit.SECONDS,
                workQueue,
                new ThreadPoolExecutor.CallerRunsPolicy());
        List<Future<bb>> results = new ArrayList<Future<bb>>(itemNum);
        // 单次计数器
        CountDownLatch countDownLatch = new CountDownLatch(itemNum);
        for(int i = 0;i < itemIdList.size();i++) {
            //这些service都是使用@Autowired注入的service类,传递过去,作为参数在线程类中查询数据使用
            OutPutTheadPoolService task = new OutPutTheadPoolService(itemIdList.get(i).getId(),countDownLatch,itemService,interaEventService,apiService,itemChildService);
            //接收返回结果值
            Future<bb> data = threadPoolExecutor.submit(task);
            //结果值添加到集合中
            results.add(data);
        }

        countDownLatch.await();        //等待线程执行完毕
        threadPoolExecutor.shutdown(); //关闭线程池

        List<bb> itemList = new ArrayList<bb>(itemNum);
        for(int k = 0; k < results.size();k++) {
            itemList.add(results.get(k).get());
        }
        return itemList;
    }

2.线程处理类,实现Callable接口

public class OutPutTheadPoolService implements Callable<bb> {

    private final Integer itemId;
    private CountDownLatch countDownLatch;
    private final ItemService itemService;
    private final InteraEventService interaEventService;
    private final ApiService apiService;
    private final ItemChildService itemChildService;

    //接收参数
    public OutPutTheadPoolService(Integer itemId,CountDownLatch countDownLatch,ItemService itemService,InteraEventService interaEventService,ApiService apiService,ItemChildService itemChildService) {
        this.itemId = itemId;
        this.countDownLatch = countDownLatch;
        this.doravisPageItemService = doravisPageItemService;
        this.doravisInteraEventService = doravisInteraEventService;
        this.doravisApiService = doravisApiService;
        this.doravisPageItemChildService = doravisPageItemChildService;
    }


    @Override
    public bb call() throws Exception {
        bb bb = new bb();
        //查询item信息
        aa aa = doravisPageItemService.getPageItemById(itemId);
        BeanUtils.copyProperties(aa,bb);
        String json = "{itemId:"+itemId+"}";
        //查询事件集合
        List<cc> eventList = interaEventService.getPreviewEventListByItemId(json);
        bb.setEventList(eventList);
       
        if(2 == bb.getAssessType() && null != bb.getApiId()) {
            Api api = apiService.getDoravisApiById(bb.getApiId());
            bb.setDoravisApi(api);
        }
        //执行完一个任务,计数器减1
        countDownLatch.countDown();
        return bb;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值