poj3041匈牙利算法

不难,理解后可以代码当成匈牙利算法的模板。

读懂题后,主要面临三个问题。第一抽象问题,第二是理解柯尼希定理,第三理解匈牙利算法。

一、题目要求,以最小的行数或列数之和消灭障碍物。

将网格数组抽象,行为一个集合X,列为另一集合Y。障碍物(X,Y)抽象为两个集合之间的边。这样网格就变成了二分图,即求解最小覆盖点。


二、接下来是柯尼希定理的证明——最小点集覆盖等于最大匹配。

首先明确最小集覆盖与最大覆盖的概念。

最大匹配数:   边数

指边数最多的匹配。最大匹配可能有不止一个,但最大匹配的边数是确定的,并且不可能超过图中顶点数的一半。

 

最小点集覆盖数: 点数

选了一个点就相当于覆盖了以它为端点的所有边,选择最少的点来覆盖图的所有的边。

  证明:

首先,最小点集覆盖一定>=最大匹配

因为假设最大匹配为n,那么我们就得到了n条互不相邻的边,光覆盖这些边就要用到n个点。

 

最小点击覆盖一定<=最大匹配。

任何一种n个点的最小点集覆盖,一定可以转化成一个n的最大匹配。因为最小点集覆盖中的每个点都能找到至少一条只有一个端点在点集中的边。

如果找不到则说明该点所有的边的另外一个端点都被覆盖,所以该点则没必要被覆盖,和它在最小点集覆盖中相矛盾。

 

所以,最小点集覆盖==最大匹配。


三、匈牙利算法实际就是使集合两边的匹配数最大。

1.遍历未匹配的节点,标记。

2.在另一集合中找到可以与之匹配的节点。

若节点未被占用,则与之匹配

若节点被占用,则递归寻找占用节点者是否还有其他选择,有即改变,节点空出,与之匹配。


另附一个趣味版的匈牙利算法:http://blog.csdn.net/dark_scope/article/details/8880547


附实AC代码:

#include<iostream>
#define MAX 510 
using namespace std;
int n, k, result[MAX];
bool grid[MAX][MAX], used[MAX];

bool find(int x){
	int i, j;
	for(i = 1; i <= n; i++){
		if(grid[x][i] == 1 && used[i] == 0){
			used[i] = 1;
			if(result[i] == 0 || find(result[i])){
				result[i] = x;
				return true;
			}
		}
	}
	return false;
}
int main(){
	while(cin>>n>>k){
		memset(grid, 0,sizeof(grid));
		memset(result, 0,sizeof(result));
		int p, q, i, sum = 0;
		for(i = 0; i < k; i++){
			cin>>p>>q;
			grid[p][q] = 1;
		}
		for(i = 1; i <= n; i++){
			memset(used, 0,sizeof(used));
			if(find(i))
				sum++;
		}
		cout<<sum<<endl;
	}
	return 0;
} 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值