JDK1.8 HashMap

1、JDK1.8 HashMap概述

参考内容

参考

​ 在JDK1.8之前,HashMap采用数组+链表实现,即使用链表处理冲突,同一hash值的节点都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。

而JDK1.8中,HashMap采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。

到了jdk1.8,当同一个hash值的节点数不小于8时,不再采用单链表形式存储,而是采用红黑树,如下图所示。

2、涉及到的数据结构:处理hash冲突的链表和黑红树以及位桶

2.1、链表的实现

Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。来看具体代码:

 //Node是HashMap的一个内部类,实现了Map.Entry接口,本质上就是一个映射
    static class Node<K,V> implements Map.Entry<K,V> {
       //直接存储hash值是为了在比较的时候加快计算
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

2.2红黑树

 /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  //父亲节点
        TreeNode<K,V> left;    //左子树
        TreeNode<K,V> right;    //右子树
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;       //颜色属性
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

2.3、 位桶

//table是一个Entry类型的数组,称为哈希表或哈希桶,
    // 其中每个元素指向一个单项链表,链表中的每个节点表示表示一个键值对
    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

有了以上3个数据结构,只要有一点数据结构基础的人,都可以大致联想到HashMap的实现了。首先有一个每个元素都是链表(可能表述不准确)的数组,当添加一个元素(key-value)时,就首先计算元素key的hash值,以此确定插入数组中的位置,但是可能存在同一hash值的元素已经被放在数组同一位置了,这时就添加到同一hash值的元素的后面,他们在数组的同一位置,但是形成了链表,所以说数组存放的是链表。而当链表长度太长时,链表就转换为红黑树,这样大大提高了查找的效率

3、类的属性

 //table是一个Node类型的数组,称为哈希表或哈希桶
            //其中每个元素指向一个单项链表,链表中的每个节点表示一个键值对
    // 存储元素的数组,总是2的幂次倍
    transient Node<K,V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    //存放具体元素的集
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     */
    // 存放元素的个数,注意这个不等于数组的长度。
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    //每次扩容和更改map结构的计数器
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
            //threshold表示阈值,当键值对个数大于等于thresholdf时考虑进行扩展
            //threshold等于 table.length * loadFactor ;
            // loadFactor是负载因子,表示整体上table被占用的程度,是一个浮点数,默认为0.75f
    // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    //负载因字
    final float loadFactor;

//序列号
    private static final long serialVersionUID = 362498820763181265L;

    /**
     * The default initial capacity - MUST be a power of two.
     */
    //初始容量为16;默认数组容量
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    //最大容量上限
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     */
    //默认的填充因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     */
    //链表长度大于该参数转为黑红树
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    //当铜山发给的节点数小于这个值时就装换为链表
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    // 桶中结构转化为红黑树对应的table的最小大小
    static final int MIN_TREEIFY_CAPACITY = 64;


4、hash算法

首先获取对象的hashCode()值,然后将hashCode值右移16位,然后将右移后的值与原来的hashCode做异或运算,返回结果。(其中h>>>16,在JDK1.8中,优化了高位运算的算法,使用了零扩展,无论正数还是负数,都在高位插入0)。

static final int hash(Object key) {
        int h;
        //基于key自身的hashCode方法的返回值又进行了一些位数运算,目的是为了随机和均匀性
        //首先获取对象的hashCode值,然后将hashCode值右移16位,然后将右移的值与燕来的hashCode左异或运算,返回结果
       //为什么右移动16位数?
        //此先在hash方法中将key的hashCode右移16位在与自身异或,
        // 使得高位也可以参与hash,更大程度上减少了碰撞率。
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

4、put方法

public V put(K key, V value) {
    // 对key的hashCode()做hash 
    return putVal(hash(key), key, value, false, true);  
} 

4.1、putVal方法解析

//在Jdk1.8中,HashMap的存储结构采用 数组+链表+红黑树这种组合型数据结构
    //当hash值发生冲突时,会采用链表或者红黑树解决冲突;当同一hash值的节点数小于8时,则采用链表,否则采用红黑树。这一改变,主要提高查询速度
   final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                  boolean evict) {
       Node<K,V>[] tab;
       Node<K,V> p;
       int n, i;

       //步骤①:tab为空则创建
       //table未初始化或者长度为0,进行扩容
       if ((tab = table) == null || (n = tab.length) == 0)
           n = (tab = resize()).length;//对hashMap进行扩容;n为hash桶数组的长度

       //步骤②:计算index,并对null左处理
       //(n-1)&hash确定元素放在哪个桶中,桶为空,新生节点放入桶中(此时,这个节点是放入数组中)
       if ((p = tab[i = (n - 1) & hash]) == null)//根据hash值来确定存放的位置;(n-1)&hash等价于hash%n
                                                 // 如果当前位置是空直接添加到table中
           tab[i] = newNode(hash, key, value, null);

       //桶中已经存在元素
       else {

           Node<K,V> e; K k;
           //步骤③:节点Key存在,直接覆盖value
           //比较桶中第一个元素(数组的节点)的hash值相等,key相等
           if (p.hash == hash &&
                   ((k = p.key) == key || (key != null && key.equals(k))))
               //将第一个元素赋值给e,用e来记录
               e = p;

          //步骤④:判断该链是否为红黑树
           //hash值不相等,即key不相等;为红黑树节点;放入树中
           else if (p instanceof TreeNode)//确认是否为红黑树
               e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
           else {
               //步骤⑤:该链尾链表
               for (int binCount = 0; ; ++binCount) {
                   //在链表的末尾插入节点
                   if ((e = p.next) == null) {
                       p.next = newNode(hash, key, value, null);
                       //链表节点大于阈值转换为红黑树
                       if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                           treeifyBin(tab, hash);
                       //跳出循环
                       break;
                   }
                   //判断链表中结点的key值与插入的元素的key值是否相等
                   if (e.hash == hash &&
                           ((k = e.key) == key || (key != null && key.equals(k))))
                       //相等条春循环
                       break;
                   // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                   p = e;
               }
           }


           // 表示在桶中找到key值、hash值与插入元素相等的结点
           if (e != null) { // existing mapping for key
               //            // 记录e的value
               V oldValue = e.value;
               //            // onlyIfAbsent为false或者旧值为null
               if (!onlyIfAbsent || oldValue == null)//
                   e.value = value;//替换新的Value并返回旧的Value
                访问后回调
               afterNodeAccess(e);
               return oldValue;
           }
       }
       //结构性修改
       ++modCount;
       //    // 实际大小大于阈值则扩容
       if (++size > threshold)
           resize();//如果当前hashMap容量大于threshold则进行扩容


       afterNodeInsertion(evict);
       return null;
   }

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XeDgc9N3-1582448730016)(images/03.png)]

5、getNode方法

final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //table已经初始化,长度大于0,根据hash寻找table中的项也不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            //桶中第一项(数组元素)相等
            if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //桶中不止一个节点
            if ((e = first.next) != null) {
                //为红黑树节点
                if (first instanceof TreeNode)
                    //在红黑树中查找
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //否则在链表中查找
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

6、扩容机制 resize

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bDNiZW0I-1582448730016)(images/04.png)]

    final Node<K,V>[] resize() {
        Node<K, V>[] oldTab = table;//首次初始化后table为Null
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;//默认构造器的情况下为0
        int newCap, newThr = 0;
        if (oldCap > 0) {//table扩容过
            //当前table容量大于最大值得时候返回当前table
             if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                //table的容量乘以2,threshold的值也乘以2           
                newThr = oldThr << 1; // double threshold
        } else if (oldThr > 0) // initial capacity was placed in threshold
        //使用带有初始容量的构造器时,table容量为初始化得到的threshold
        newCap = oldThr;
        else{  //默认构造器下进行扩容  
            // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            //使用带有初始容量的构造器在此处进行扩容
            float ft = (float) newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
                    (int) ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes", "unchecked"})
        Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
        table = newTab;
      if (oldTab != null) {
            //对新扩容后的table进行赋值,条件中的代码删减
        }
        return newTab;
    }

if (oldTab != null) {
            //对新扩容后的table进行赋值,条件中的代码删减

            //oldCap为原数组的长度
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    //将原数组位置置为空,应该是便于垃圾回收吧
                    oldTab[j] = null;
                    //如果数组中只存放了一个元素,即不是红黑树
                    //结构也不是链表结构
                    if (e.next == null)
                        //直接通过&算法找到数组中的位置
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        //如果是红黑树结构,就调用split
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        //如果数组中存放的是链表,会将原来的链分成两条链表
                        Node<K,V> loHead =null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //通过计算e.hash&oldCap==0构造一条链
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            } //通过e.hash&oldCap!=0构造另外一条链
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        //遍历结束以后,将tail指针指向null
                        //e.hash&oldCap==0构造而来的链的位置不变
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        //e.hash&oldCap!=0构造而来的链的位置在数
                        //组j+oldCap位置处
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }





        }

这里暂时只介绍链表,红黑树结构暂时还只了解概念
为什么说扩容机制很好玩呢,因为它会将原来的链表同过计算e.hash&oldCap==0分成两条链表,再将两条链表散列到新数组的不同位置上
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直
在这里插入图片描述
扩容前数组长度为8,扩容为原数组长度的2倍即16。
原来有一条链表在tab[2]的位置,扩容以后仍然有一条链在tab[2]的位置,另外一条链在tab[2+8]即tab[10]的位置处。

多线程情况,对hashmap进行put操作会引起resize,并可能会造成数组元素的丢失

链接:https://www.jianshu.com/p/0ab3e05b1d23

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值