线性回归(linear regression)

线性回归是一种预测模型,用于解决回归问题,输出是连续值。通常包括设定模型、评估函数质量及选择最佳函数三个步骤。模型设定中,线性模型是最简单的一类,通过学习参数来拟合数据。最佳函数的选择可通过最小二乘法或梯度下降法实现,其中梯度下降法在损失函数变化时更为适用,并可以通过特征缩放提升模型的收敛速度和精度。
摘要由CSDN通过智能技术生成

线性回归(liner regression)

1、回归问题

回归问题和分类问题很相似,回归问题输出的是一个标量(scalar),即输出的是一个连续的值。

在这里插入图片描述
回归其实就是预测,根据输入(Input)得到输出(output)。关键是 如何描述输入与输出的关系,输入与输出的关系 是一种映射关系,数学里面的函数关系(functiona relationship)。怎么样找到这种二者之间的这种关系?

这里面有两种数据,一种是训练数据(train set)和测试数据(test set data);训练数据是指使用该数据来找到 输入与输出之间关系的 数据,找到function的数据集;测试数据是用来判断 训练所得到 function 的好坏。

2、一般步骤

要寻找数据和对应连续值之间的关系,实际就是要找到一个函数,能够将数据映射到连续值上。

回归问题一般通过以下三步解决:

  1. Model: set a model (function set)
    选择一个模型。模型实际就是函数的集合,线性回归模型,就是所有线性函数组成的集合
  2. Goodness of function
    需要有一个评判标准,能够判断函数的好坏 (评价model中的某个function 预测的值与真实值之间的偏离程度的一个 loss function)
  3. Best function
    利用上一步中评判标准,在函数集合中找到最好的函数

对于不同的模型,寻找最好的函数的方法,很有可能是不一样的。但是对于同一个问题,判断函数好坏的方法往往是相同的。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值