Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, a binary tree can be uniquely determined.
Now given a sequence of statements about the structure of the resulting tree, you are supposed to tell if they are correct or not. A statment is one of the following:
- A is the root
- A and B are siblings
- A is the parent of B
- A is the left child of B
- A is the right child of B
- A and B are on the same level
- It is a full tree
Note:
- Two nodes are on the same level, means that they have the same depth.
- A full binary tree is a tree in which every node other than the leaves has two children.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are no more than 10^3 and are separated by a space.
Then another positive integer M (≤30) is given, followed by M lines of statements. It is guaranteed that both A and B in the statements are in the tree.
Output Specification:
For each statement, print in a line Yes if it is correct, or No if not.
思路
先已知后续和中序,建立二叉树,结构体中设置左孩子、右孩子、层数、父结点四个成员。建立二叉树有一个小技巧,将这个结点的数据作为下标,就不会出现下标重叠的情况,判断时直接用下标也很方便。根据这7种字符串输入的规律先设计一个input函数判断输入的是哪种类型,将其中出现的数据用a和b存储下来,再根据结构体里的成员进行判断。
代码
//来源https://blog.csdn.net/lianwaiyuwusheng/article/details/88084378
#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
const int maxn=35;
int n,m,post[maxn],in[maxn],cnt=0,a,b,flag=0;
string str;
struct node{
int depth,lchild,rchild,father;
}arr[maxn];
int create(int postr,int inl,int inr,int depth,int father){
if(inl>inr) return -1;
int i=inl;
while(in[i]!=post[postr]) i++;
arr[post[postr]].depth=depth;
arr[post[postr]].father=father;
arr[post[postr]].lchild=create(postr-inr+i-1,inl,i-1,depth+1,post[postr]);
arr[post[postr]].rchild=create(postr-1,i+1,inr,depth+1,post[postr]);
if((arr[post[postr]].rchild!=-1&&arr[post[postr]].lchild==-1)||(arr[post[postr]].rchild==-1&&arr[post[postr]].lchild!=-1))
flag=1;
return post[postr];
}
int input(){
cin>>str;
int i;
if(str[0]>='0'&&str[0]<='9'){
i=0;
a=0;
while(i<str.length())
a=a*10+str[i++]-'0';
cin>>str;
if(str=="and"){
scanf("%d",&b);
cin>>str;cin>>str;
if(str=="siblings")
return 2;
else{ //不需要的部分也要处理
i=3;
while(i--) cin>>str;
return 6;
}
}else{
cin>>str;cin>>str;
if(str=="root")
return 1;
else if(str=="parent"){
cin>>str;scanf("%d",&b);
return 3;
}
else if(str=="left"){
cin>>str;cin>>str;scanf("%d",&b);
return 4;
}
else if(str=="right"){
cin>>str;cin>>str;scanf("%d",&b);
return 5;
}
}
}else{
i=4;
while(i--) cin>>str;
return 7;
}
}
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&post[i]);
for(int i=0;i<n;i++)
scanf("%d",&in[i]);
int root=create(n-1,0,n-1,0,-1);
scanf("%d",&m);
for(int i=0;i<m;i++){
int x=input();
bool f=true;
if(x==1){
if(a!=root) f=false;
}else if(x==2){
if(arr[a].father!=arr[b].father) f=false;
}else if(x==3){
if(arr[b].father!=a) f=false;
}else if(x==4){
if(arr[b].lchild!=a) f=false;
}else if(x==5){
if(arr[b].rchild!=a) f=false;
}else if(x==6){
if(arr[a].depth!=arr[b].depth) f=false;
}else if(x==7){
if(flag) f=false;
}
if(f) printf("Yes\n");
else printf("No\n");
}
return 0;
}