【模板】严格次小生成树 \color{green}{\text{【模板】严格次小生成树}} 【模板】严格次小生成树
【
题
目
大
意
】
:
\color{blue}{【题目大意】:}
【题目大意】: 小C
最近学了很多最小生成树的算法,Prim算法
、Kurskal算法
、消圈算法
等等。正当小C
洋洋得意之时,小P
又来泼小C
冷水了。小P
说,让小C
求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是
E
M
E_M
EM,严格次小生成树选择的边集是
E
S
E_S
ES,那么需要满足:(
v
a
l
u
e
(
e
)
value(e)
value(e)表示边
e
e
e的权值)
【
思
路
】
:
\color{blue}{【思路】:}
【思路】: 先求出原图的最小生成树,然后我们考虑如何把最小生成树变成严格次小生成树。
我们发现:严格次小生成树与最小生成树只有一条边是不一样的。于是,我们可以枚举那条边是哪条边。
假设我们加入的边是边 ( u , v ) (u,v) (u,v),加入后一定会有环,于是我们把环上除 ( u , v ) (u,v) (u,v)外最大的边删除即可。当除 ( u , v ) (u,v) (u,v)外最大的边权 = = = ( u , v ) (u,v) (u,v)时,删除严格次大即可。
最大边权和严格次大边权可以用倍增求出。
【 代 码 】 : \color{blue}{【代码】:} 【代码】:
typedef long long ll;
const int N=1e5+100;
const int M=3e5+100;
struct edge{
int next,to;ll len;
}e[N<<1];int h[N],tot;
inline void add(int a,int b,ll w){
e[++tot]=(edge){h[a],b,w};h[a]=tot;
e[++tot]=(edge){h[b],a,w};h[b]=tot;
}
struct node{
int u,v;ll w;bool chose;
node(int _u=0,int _v=0,ll _w=0,bool _c=false){
u=_u;v=_v;w=_v;chose=_c;
}
bool operator < (node c) const{
return w<c.w;
}
}a[M<<1];
struct union_set{
int f[N],s[N];
void init(int n){
for(int i=1;i<=n;i++){
f[i]=i;s[i]=1;
}
}
int getf(int x){
if (f[x]==x) return x;
return f[x]=getf(f[x]);
}
void merge(int x,int y){
int a=getf(x),b=getf(y);
if (a==b) return;
if (s[a]<s[b]) swap(a,b);
f[b]=a;s[a]+=s[b];
}
bool query(int x,int y){
return getf(x)==getf(y);
}
}F;int n,m;ll cnt;
inline void kruskal(){
sort(a+1,a+m+1);F.init(n);
for(int i=1;i<=m;i++)
if (!F.query(a[i].u,a[i].v)){
F.merge(a[i].u,a[i].v);
add(a[i].u,a[i].v,a[i].w);
cnt+=a[i].w;a[i].chose=true;
}
}
const ll inf=1ll<<62ll;
ll dep[N],f[N][22],maxn[N][22],minn[N][22];
void dfs_init(int u,int fa){
dep[u]=dep[fa]+1;
for(int i=0;i<20;i++){
f[u][i+1]=f[f[u][i]][i];
maxn[u][i+1]=max(maxn[u][i],maxn[f[u][i]][i]);
minn[u][i+1]=max(minn[u][i],minn[f[u][i]][i]);
if (maxn[u][i]>maxn[f[u][i]][i])
minn[u][i+1]=max(minn[u][i+1],maxn[f[u][i]][i]);
else if (maxn[u][i]<maxn[f[u][i]][i])
minn[u][i+1]=max(minn[u][i+1],maxn[u][i]);
}
for(int i=h[u];i;i=e[i].next){
register int to=e[i].to;
if (to==fa) continue;
f[to][0]=u;minn[to][0]=-inf;
maxn[to][0]=e[i].len;
dfs_init(to,u);
}
}
int lca(int u,int v){
if (dep[u]<dep[v]) swap(u,v);
for(int i=20;i>=0;i--)
if (dep[f[u][i]]>=dep[v])
u=f[u][i];
if (u==v) return u;
for(int i=20;i>=0;i--)
if (f[u][i]!=f[v][i])
u=f[u][i],v=f[v][i];
return f[v][0];
}
ll query(int u,int LCA,ll t){
register ll ans=-inf;
for(int i=20;i>=0;i--)
if (dep[f[u][i]]>=dep[LCA]){
if (t!=maxn[u][i]) ans=max(ans,maxn[u][i]);
else ans=max(ans,minn[u][i]);
u=f[u][i];
}
return ans;
}
ll ans,res;int ret;
int main(){
n=read();m=read();ans=inf;
for(int i=1;i<=m;i++){
a[i].u=read();
a[i].v=read();
a[i].w=read();
}
kruskal();dfs_init(1,0);
for(int i=1;i<=m;i++)
if (!a[i].chose){
ret=lca(a[i].u,a[i].v);
res=query(a[i].u,ret,a[i].w);
res=max(res,query(a[i].v,ret,a[i].w));
ans=min(ans,cnt-res+a[i].w);
}
printf("%lld",ans);
return 0;
}