2020.02.29日常总结兼拉格朗日插值算法略讲

本文首先介绍了快速幂和逆元的基础知识,随后详细讲解了拉格朗日插值算法,包括算法原理、洛谷上的题目实例及算法模板。拉格朗日插值算法能证明通过n个点的直线方程,并提供了直接求解的方法,时间复杂度为O(n^2)。文章还附带了算法实现的代码。
摘要由CSDN通过智能技术生成

【 前 置 知 识 】 \color{green}{【前置知识】}

  • 快速幂( O ( log ⁡ n ) O(\log n) O(logn))
  • 利用快速幂求逆元

【 算 法 略 讲 】 \color{green}{【算法略讲】}

【 模 板 链 接 】 : \color{blue}{【模板链接】:} 洛谷P4781

【 算 法 略 讲 】 : \color{blue}{【算法略讲】:} 所谓的拉格朗日插值算法,就是证明了,当直线 y = f ( x ) y=f(x) y=f(x)经过了 n n n个点 ( x 1 , y 1 ) , ( x 2 , y 2 ) ⋯ ( x n , y n ) (x_1,y_1),(x_2,y_2) \cdots (x_n,y_n) (x1,y1),(x2,y2)(xn,yn)时,对于任意的 t t t有:

f ( t ) = ∑ i = 1 n ( Π j = 1 n t − x j x i − x j ( i ≠ j ) ) f(t)=\sum\limits_{i=1}^{n} (\Pi^{n}_{j=1} \dfrac{t-x_j}{x_i-x_j}(i \neq j)) f(t)=i=1n(Πj=1nxixjtxj(i=j))

直接代入 t = k t=k t=k求解,加以逆元辅助即可。时间复杂度 O ( n 2 ) O(n^2) O(n2)

【 代 码 】 : \color{blue}{【代码】:}

const int mod=998244353;
int ksm(int a,int b){
	register int ret=1;
	while (b){
		if (b&1) ret=1ll*ret*a%mod;
		a=1ll*a*a%mod;b>>=1;
	}
	return ret;
}//快速幂算法 
const int N=2010;
int n,k,ans,x[N],y[N];
int main(){
	scanf("%d%d",&n,&k);
	for(int i=1;i<=n;i++)
		scanf("%d%d",&x[i],&y[i]);
//	输入n个点(xi,yi) 
	for(int i=1;i<=n;i++){
		int s1=y[i]%mod,s2=1;
		for(int j=1;j<=n;j++)
			if (i!=j){//注意边界条件,否则将RE 
				s1=1ll*s1*((k-x[j]+mod)%mod)%mod;
				s2=1ll*s2*((x[i]+mod-x[j])%mod)%mod;
			} 
			ans=(1ll*ans+(1ll*s1*ksm(s2,mod-2)%mod))%mod;
//			注意中间结果可能会爆int,需要中转long long求值 
	}
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值