2020.05.23日常总结

洛谷P1392  取数\color{green}{\texttt{洛谷P1392\ \ 取数}}

【题意】:\color{blue}{\texttt{【题意】:}}

  • 在一个 n×mn \times m 的数阵中,你须在每一行取一个数(共 nn 个数),并将它们相加得到一个和。
  • 对于给定的数阵,请你输出和前 kk 小的取数方法。
  • 1n800,1km8001 \leq n \leq 800,1 \leq k \leq m \leq 800

【思路】:\color{blue}{\texttt{【思路】:}}

我国伟大的数学家华罗庚说过:“退,足够地退,退到最原始而不失重要性的地方,那是学号数学的一个诀窍。”

这句话意思是当我们想不出正解时,我们可以先考虑这题的简化形式,然后再逐步转移到正解。这句话当然也可以用到 OI\texttt{OI} 上,比如这题。


简化情况\color{red}{\texttt{简化情况}}

我们先考虑 n=2n=2 时的情况。即两行的数列分别为 a,b\texttt{a,b}

首先将 a,b\texttt{a,b} 从小到大排序,这样做可以简化我们对问题的处理(这也是一个非常常用的技巧)。

如何求 n=2n=2 时的解呢?我们枚举 i,ji,j,表示我们考虑将 ai+bja_i+b_j 加入我们的候选队列中,分情况讨论:

  • 当候选队列内元素不到 kk 个时,直接把 ai+bja_i+b_j 加入候选队列。
  • 当候选队列内元素等于 kk 个时,我们先把 ai+bja_i+b_j 加入候选队列,然后,因为我们要维护候选队列内元素个数 k\leq k 个,所以,我们把最大的数给删除掉。

考虑如何快速地维护上述操作。我们发现,我们可以用一个 大根堆 维护这个所谓的候选队列。为什么是大根堆?因为用大根堆可以很方便地删除最大的元素。

这样,我们就搞定了 n=2n=2 时的情况。


回到原题\color{red}{\texttt{回到原题}}

如何从 n=2n=2 的情况转移到 n>2n>2 时的情况呢?

很简单,我们把前 22 行的答案放入一个数组 cc 中,把第 ii 行(ii 表示当前处理的行号)的数放入数组 dd 中。然后就回到了 n=2n=2 时的情况。


【代码】:\color{blue}{\texttt{【代码】:}}

struct Big_Root_Heap{
	int t[83000],hsze;
	inline void init_heap(){
		memset(t,0,sizeof(t));
		hsze=0;//清空大根堆
	}
	inline void push(int x){
		t[++hsze]=x;int now=hsze,nxt;
		while ((now>>1)>=1){
			nxt=now>>1;//nxt为now的父亲
			if (t[now]<t[nxt]) break;
			else swap(t[now],t[nxt]);
			now=nxt;//迭代计算
		}
	}//在大根堆中加入一个元素
	inline void pop(){
		t[1]=t[hsze];hsze--;
		register int now=1,nxt;
		while ((now<<1)<=hsze){
			nxt=now<<1;//nxt为now的儿子
			if (nxt<hsze&&t[nxt+1]>t[nxt]) nxt++;
			if (t[now]>t[nxt]) break;
			else swap(t[now],t[nxt]);
			now=nxt;
		}
	}//在大根堆中删除最大值(即根)
	inline int size(){return hsze;}
	inline int top(){return t[1];}
}q;int n,m,k,a[830],b[830];
inline void calc_first_kth(){
	q.init_heap();//先清空堆,避免组间的影响 
	sort(b+1,b+m+1);//再将数组排序,方便处理 
	for(int i=1;i<=k;i++) q.push(a[1]+b[i]);
	for(int i=2;i<=k;i++)        //先枚举a[i] 
		for(int j=1;j<=k;j++)    //再枚举b[j] 
			if (a[i]+b[j]<q.top()){//可以加入 
				q.pop();//先把原堆中最大的元素输出 
				q.push(a[i]+b[j]);//再将a[i]+b[j]加入 
			}
			else break;//否则,直接进入下层循环,优化,否则TLE 
	for(int i=1;i<=k;i++) a[k-i+1]=q.top(),q.pop();
}
int main(){
	scanf("%d%d%d",&n,&m,&k);
	for(int i=1;i<=m;i++)
		scanf("%d",&a[i]);
	sort(a+1,a+m+1);//排序 
	for(int i=2;i<=n;i++){
		for(int j=1;j<=m;j++)
			scanf("%d",&b[j]);
		calc_first_kth();
	}
	for(int i=1;i<=k;i++)
		printf("%d ",a[i]);
	return 0;
}

几个需要注意的地方:
1. 这道题不能用 STL,否则会 TLE,必须手写大根堆
2. 建议大家把数据结构分装到一个结构体或类中,如果需要用到多个同一数据结构时,优势明显。
3. calc_first_kth() 中的 else break 不能少,否则会 TLE
4. 本程序没有反作弊系统
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读