洛谷P9235 [蓝桥杯 2023 省 A] 网络稳定性

[Problem   Discription] \color{blue}{\texttt{[Problem Discription]}} [Problem Discription]

给定一个 n n n 个点和 m m m无向边组成的图,每条边都有一个边权 ω i \omega_{i} ωi

一条路径的稳定性定义为这条路径上所有边的边权的最小值

从给定节点 u u u v v v 的总价值定义为从 u u u v v v 的所有路径各自稳定性的最大值。如果没有路径联通 u , v u,v u,v,那么价值为 − 1 -1 1

q q q 组询问,每次询问给定 u , v u,v u,v,求 u u u v v v 的总价值。

1 ≤ n , q ≤ 1 × 1 0 5 , 1 ≤ m ≤ 3 × 1 0 5 1 \leq n,q \leq 1 \times 10^{5},1 \leq m \leq 3 \times 10^{5} 1n,q1×105,1m3×105

[Analysis] \color{blue}{\texttt{[Analysis]}} [Analysis]

最小值最大的问题一般都是二分,但是这题不是。

首先是否联通可以用并查集求解,非常简单。

可以先考虑图联通的情况,不联通的情况不过也就是由几个联通的图组成。

考虑一个 n n n 个点 m m m 条边的联通的图(注意这里的 n , m n,m n,m 和题目里的 n , m n,m n,m 意义不相同)。首先先证明最终答案一定是最大生成树里的边。

证明依旧是采用反证法:如果最终答案里某一条路径不是最大生成树里的路径,那么我们考虑那条不在最大生成树里的边:

  1. 它的边权小于最大生成树里的最小边,那么既然最大生成树就足以把图里的所有节点联通,并且稳定性更好,为什么非要走这条边呢?
  2. 它的边权大于最大生成树里的最小边,它不在最大生成树肯定是因为最大生成树里有那么一条路径,这条路径上所有边的稳定性比这条边要大,而且这条路径联通了这条路径的两个节点(假设这两个节点是 u , v u,v u,v)。既然这样,我们的路径就可以这么修正:其它边不变,这条不在最大生成树里的边用最大生成树里联通 u , v u,v u,v 的若干条边代替。这样总答案一定不会变劣。

既然答案一定诞生在最大生成树里,那就先把最大生成树建立出来呀。

建立最大生成树后,由于在树上任意两个节点间一定有且只有一条路径连接。问题就变成了求这条路径上所有边的稳定性的最小值。

树上倍增的典例呀。类似于倍增求 LCA 的那种算法。在求 LCA 的同时顺带可以把这个值求出。

具体来说,就是设 f i , u f_{i,u} fi,u 表示从 u u u 到其 2 i 2^{i} 2i 级祖先的路径的最小值,那么有:

f i , u = min ⁡ { f i − 1 , u , f i − 1 , fa i − 1 , u } f_{i,u}=\min\left \{ f_{i-1,u},f_{i-1,\text{fa}_{i-1,u}} \right \} fi,u=min{fi1,u,fi1,fai1,u}

其中 fa i , u \text{fa}_{i,u} fai,u 表示 u u u 的第 2 i 2^{i} 2i 级祖先。

总时间复杂度 O ( n log ⁡ n ) O(n \log n) O(nlogn)

Code \color{blue}{\text{Code}} Code

const int N=1e5+100;
const int M=3e5+100;
const int inf=0x3f3f3f3f;

struct PraticalLink{
	int u,v,w;
	
	bool operator < (PraticalLink t) const{
		return w>t.w;
	}
}Link[M];

struct UnionFind{
	int Fa[N],n;
	
	void clear(int n){
		for(int i=1;i<=n;i++) Fa[i]=i; 
	}
	
	int getf(int x){
		if (Fa[x]==x) return x;
		return Fa[x]=getf(Fa[x]);
	}
	void merge(int x,int y){
		int u=getf(x),v=getf(y);
		if (u==v) return;
		Fa[v]=u;
	}
	bool query(int u,int v){
		return getf(u)==getf(v);
	}
}Reach,Kru;//封装一个并查集

struct edge{
	int nxt,to,val;
}e[M<<1];int h[N],ecnt;
inline void add(int u,int v,int w){
	e[++ecnt]=(edge){h[u],v,w};h[u]=ecnt;
	e[++ecnt]=(edge){h[v],u,w};h[v]=ecnt;
}

int n,m,q;

void Kruskal(){
	sort(Link+1,Link+m+1);
	
	Kru.clear(n);
	for(int i=1;i<=m;i++)
		if (!Kru.query(Link[i].u,Link[i].v)){
			add(Link[i].u,Link[i].v,Link[i].w);
			Kru.merge(Link[i].u,Link[i].v);
		}//建立最小生成树
}

int Fa[22][N],minn[22][N],dep[N];

void dfs(int u,int fa){
	dep[u]=dep[fa]+1;
	
	for(int i=h[u];i;i=e[i].nxt){
		int v=e[i].to;
		if (v==fa) continue;
		
		Fa[0][v]=u;minn[0][v]=e[i].val;
		dfs(v,u);
	}
}
void dispose(){
	for(int j=1;j<=20;j++)
		for(int i=1;i<=n;i++){
			Fa[j][i]=Fa[j-1][Fa[j-1][i]];
			minn[j][i]=min(minn[j-1][i],minn[j-1][Fa[j-1][i]]);
		}
}//树上倍增
int query(int u,int v){
	int ans=inf;
	
	if (dep[u]<dep[v]) swap(u,v);
	
	for(int i=20;i>=0;i--)
		if (dep[u]-dep[v]>=(1<<i)){
			ckmin(ans,minn[i][u]);
			u=Fa[i][u];
		}
	
	if (u==v) return ans;
	
	for(int i=20;i>=0;i--)
		if (Fa[i][u]!=Fa[i][v]){
			ckmin(ans,min(minn[i][u],minn[i][v]));
			u=Fa[i][u];v=Fa[i][v];
		}
	
	ckmin(ans,min(minn[0][u],minn[0][v]));
	return ans;
}

int main(){
	n=read();m=read();q=read();
	
	Reach.clear(n);
	
	for(int i=1;i<=m;i++){
		Link[i].u=read();
		Link[i].v=read();
		Link[i].w=read();
		
		Reach.merge(Link[i].u,Link[i].v);
	}
	
	Kruskal();
	for(int i=1;i<=n;i++)
		if (Reach.Fa[i]==i) dfs(i,0);
	dispose();
	
	for(int i=1;i<=q;i++){
		int u=read(),v=read();
		
		if (!Reach.query(u,v)) printf("-1\n");
		else printf("%d\n",query(u,v));
	}
	
	return 0;
}

read() 表示快读
ckmin(a,b) 表示取 a,b 间的较小值并把之赋值给 a
  • 15
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这道题目是一个简单的大数加法问题,需要你实现两个任意长度的非负整数的加法。 具体的做法是,从个位开始一位一位地相加,处理进位即可。具体步骤如下: 1. 从个位开始,将两个数的个位相加,得到结果和进位。将结果的个位记录下来,进位的值留到下一位相加时使用。 2. 继续处理十位、百位等等,每一位的处理方式都是相同的:将两个数对应位上的数字相加,再加上上一位的进位值,得到结果和进位。将结果的个位记录下来,将进位的值留到下一位相加时使用。 3. 如果两个数的长度不一样,则需要处理一下多余的部分。比如说,如果一个数比另一个数多了一位,那么多出来的那一位与另一个数的相应位相加时,只需要将这一位的数字和上一步的进位相加即可。 4. 最后,如果最高位的进位值不为 0,则需要在答案的最高位上再加一个进位值。 具体实现的时候,可以使用一个数组来存储每一位的结果。注意数组的长度需要预先设定好,至少要比两个数中较长的那个数的位数多一位。 下面是一份 C++ 的代码,可以供参考: ```cpp #include <iostream> #include <cstring> using namespace std; const int MAXN = 10005; int a[MAXN], b[MAXN], c[MAXN]; int main() { string s1, s2; cin >> s1 >> s2; int len1 = s1.length(), len2 = s2.length(); for (int i = 0; i < len1; i++) a[len1 - i] = s1[i] - '0'; for (int i = 0; i < len2; i++) b[len2 - i] = s2[i] - '0'; int len = max(len1, len2); for (int i = 1; i <= len; i++) { c[i] += a[i] + b[i]; c[i + 1] += c[i] / 10; c[i] %= 10; } while (len > 1 && c[len] == 0) len--; for (int i = len; i >= 1; i--) cout << c[i]; cout << endl; return 0; } ``` 希望能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值