洛谷P1121 环状最大两段子段和 \color{green}{\texttt{洛谷P1121\ \ \ 环状最大两段子段和}} 洛谷P1121 环状最大两段子段和
【题意】: \color{blue}{\texttt{【题意】:}} 【题意】:
- 给你一个首尾相接的数组 a a a(即环),选出其中连续 不重叠 且 非空 的 两段 使得这两段和最大。
- 2 ≤ n ≤ 2 × 1 0 5 , − 1 × 1 0 4 ≤ a i ≤ 1 × 1 0 4 ( 1 ≤ i ≤ n ) 2 \leq n \leq 2 \times 10^5,-1\times 10^4 \leq a_i \leq 1 \times 10^4(1 \leq i \leq n) 2≤n≤2×105,−1×104≤ai≤1×104(1≤i≤n)。
- 注意两段子段可以相连(相当于一段)。
【思路】: \color{blue}{\texttt{【思路】:}} 【思路】:
对于环上的 dp
,我们一般考虑破环为链法,即把环转化为链。
破环为链法中,又有几种比较常见的处理方法,这里列举两种:
- 把数组复制两遍,即把数组 a 1.. n a_{1..n} a1..n 变成数组 a 1..2 n a_{1..2n} a1..2n,其中 a i = a i − n ( n + 1 ⩽ i ⩽ 2 n ) a_i=a_{i-n}(n+1 \leqslant i\leqslant 2n) ai=ai−n(n+1⩽i⩽2n)。这是最常用的一种破环为链法。
- 不复制,直接用其它方法把环转化为链。
在本题中,我们发现虽然第一种很常用,但是我们仍然无法用它来解决问题。所以我们考虑第二种方法。
我们发现用第二种方法时,我们无法把所有的情况统一在一起讨论,这个时候,我们就需要用到另一种数学( OI \texttt{OI} OI 也适用)的方法了,那就是:分类讨论。
-
第一种情况:两段子段都不跨越首尾,即类似于这样的:
0001111100002220000 0001111100002220000 0001111100002220000
0 0 0 表示该位不选, 1 1 1 表示选且属于第一子段, 2 2 2 表示选且属于第二子段。
我们记 f i f_i fi 表示 a 1.. i a_{1..i} a1..i 的最大子段和, g i g_i gi 表示 a i . . n a_{i..n} ai..n 的最大子段和,则答案为:
max i = 1 n f i + g i + 1 \max\limits_{i=1}^{n} f_i+g_{i+1} i=1maxnfi+gi+1
-
第二种情况:其中一个子段跨越了首尾,即类似于此:
2220001111110000022 2220001111110000022 2220001111110000022
命名方法同上。
直接求很难,我们就考虑反着做,毕竟正难则反。
我们发现 0 0 0 所占据的正好就是两个子段,于是,我们即 f i f_i fi 表示 a 1.. i a_{1..i} a1..i 的最小子段和, g i g_i gi 表示 a i + 1.. n a_{i+1..n} ai+1..n 的最小子段和。则答案为:
∑ i = 1 n a i − min i = 1 n f i + g i + 1 \sum\limits_{i=1}^{n} a_i - \min\limits_{i=1}^{n} f_i + g_{i+1} i=1∑nai−i=1minnfi+gi+1
注意当 f i + g i + 1 f_i+g_{i+1} fi+gi+1 正好就是整个区间的情况,需要特判,因为这样相当于选得数为空。
【代码】: \color{blue}{\texttt{【代码】:}} 【代码】:
const int N=2e5+100;
#define ll long long
int n;ll ans,res,sum;
ll f[N],g[N],h[N],a[N];
const ll inf=0x3f3f3f3f3f;
inline ll calc_min_sum(){
h[0]=h[n+1]=f[0]=g[n+1]=inf;
for(register int i=1;i<=n;i++){
h[i]=min(h[i-1]+a[i],a[i]);
f[i]=min(f[i-1],h[i]);
}
for(register int i=n;i>=1;i--){
h[i]=min(h[i+1]+a[i],a[i]);
g[i]=min(g[i+1],h[i]);
}
register ll ret=inf;
for(int i=1;i<=n;i++)
ret=min(ret,f[i]+g[i+1]);
return ret;
}
inline ll calc_max_sum(){
h[0]=h[n+1]=f[0]=g[n+1]=-inf;
for(register int i=1;i<=n;i++){
h[i]=max(h[i-1]+a[i],a[i]);
f[i]=max(f[i-1],h[i]);
}
for(register int i=n;i>=1;i--){
h[i]=max(h[i+1]+a[i],a[i]);
g[i]=max(g[i+1],h[i]);
}
register ll ret=-inf;
for(int i=1;i<=n;i++)
ret=max(ret,f[i]+g[i+1]);
return ret;
}
int main(){
freopen("t1.in","r",stdin);
n=read();//我们的程序开始了
for(int i=1;i<=n;i++)
sum+=(a[i]=read());
ans=calc_max_sum();//求最大
res=calc_min_sum();//求最小
if (res==sum){//全部数子为负
res=ans=-inf;//最大;次大
for(int i=1;i<=n;i++){
if (a[i]>res){
ans=res;
res=a[i];
}
else ans=max(ans,a[i]);
}
printf("%lld",ans+res);
}
else{//数字有正有负(普通情况)
printf("%lld",max(ans,sum-res));
}
return 0;
}