P8087 [JROI-5] Interval \color{green}{\texttt{P8087 [JROI-5] Interval}} P8087 [JROI-5] Interval
[Problem] \color{blue}{\texttt{[Problem]}} [Problem]
1 ≤ n ≤ 4 × 1 0 6 , 1 ≤ f i ≤ 1 × 1 0 9 1 \leq n \leq 4 \times 10^{6},1 \leq f_{i} \leq 1 \times 10^{9} 1≤n≤4×106,1≤fi≤1×109。
[Solution] \color{blue}{\texttt{[Solution]}} [Solution]
首先,我们发现, Mex \text{Mex} Mex 函数是一个有着“木桶短板效应”的函数,即无论区间 [ l , r ] [l,r] [l,r] 有多少个元素,最大的元素有多么的巨大,只要 1 1 1 没有出现, Mex ( l , r ) \text{Mex}(l,r) Mex(l,r) 的值就是 1 1 1; 1 1 1 出现了, 2 2 2 没有出现,值就是 2 2 2……
在区间长度 ( r − l + 1 ) (r-l+1) (r−l+1) 固定的情况下, f r − l + 1 f_{r-l+1} fr−l+1 是一定的,我们自然希望 Mex ( l , r ) \text{Mex}(l,r) Mex(l,r) 越大越好。
如何选择这个区间 [ l , r ] [l,r] [l,r] 呢?我们说过, Mex \text{Mex} Mex 是有“木桶短板效应”的函数,区间 [ l , r ] [l,r] [l,r] 中必须要先有 1 1 1,否则就一切白干了。
选了 1 1 1 进来后,显然如果 2 2 2 没有被选,这个区间再长也没用,那么我们就应该还要尽可能把 2 2 2 选进来。
同理,接下来应该考虑的是能不能把 3 3 3 选进来。然后是 4 , 5 , 6 , ⋯ 4,5,6, \cdots 4,5,6,⋯。
因为 a 1.. n a_{1 ..n} a1..n 是一个排列,所以 1 , 2 , 3 , ⋯ , n 1,2,3,\cdots ,n 1,2,3,⋯,n 的位置是确定而且唯一的,所以直接用三个指针 l , r , cur l,r,\texttt{cur} l,r,cur,分别表示现在选中的区间是 [ l , r ] [l,r] [l,r], Mex ( l , r ) \text{Mex}(l,r) Mex(l,r) 的值等于 cur \texttt{cur} cur。根据上面的分析,我们应该考虑区间 [ l , r ] [l,r] [l,r] 是否可以扩充到包含 cur \texttt{cur} cur,如果可以,令 cur \texttt{cur} cur 累加 1 1 1,不可以,那么 Mex ( l , r ) = cur \text{Mex}(l,r)=\texttt{cur} Mex(l,r)=cur。
直接枚举答案,可以 O ( n ) O(n) O(n) 解决这道题。
具体实现看代码。
[code] \color{blue}{\texttt{[code]}} [code]
const int N=4e6+100;
int pos[N],a[N],f[N],n;
inline int dist(int d,int l,int r){
if (l<=pos[d]&&pos[d]<=r) return 0;//included
if (pos[d]<l) return l-pos[d];
if (pos[d]>r) return pos[d]-r;
}
int main(){
n=read();
for(int i=1;i<=n;i++)
pos[a[i]=read()]=i;
for(int i=1;i<=n;i++)
f[i]=read();
int l=pos[1],r=pos[1],cur=2;
if (f[1]<cur){
printf("%d",1);
return 0;
}
for(int i=2;i<=n;i++){
//如何判断可否扩展?只要扩展到 cur 后区间长度仍然小于 i 即可
while (dist(cur,l,r)+(r-l+1)<=i){
r=max(r,pos[cur]);
l=min(l,pos[cur]);
cur++;
}
//cur: Mex(l,r)
if (f[i]<cur){
printf("%d",i);
return 0;
}
}
printf("0");//还要记得无解的情况
return 0;
}
后记:其实人生也像这道题一样,不能一昧地追求那些看上去很有价值的,就像这题里不能地选择那么很大的 a i a_{i} ai 一样,而应该多想如何补上自己的短板(就像这题里让 cur \texttt{cur} cur 尽量大一样)。