2022.01.30 洛谷P8087

P8087   [JROI-5]   Interval \color{green}{\texttt{P8087 [JROI-5] Interval}} P8087 [JROI-5] Interval

[Problem] \color{blue}{\texttt{[Problem]}} [Problem]

在这里插入图片描述

1 ≤ n ≤ 4 × 1 0 6 , 1 ≤ f i ≤ 1 × 1 0 9 1 \leq n \leq 4 \times 10^{6},1 \leq f_{i} \leq 1 \times 10^{9} 1n4×106,1fi1×109

[Solution] \color{blue}{\texttt{[Solution]}} [Solution]

首先,我们发现, Mex \text{Mex} Mex 函数是一个有着“木桶短板效应”的函数,即无论区间 [ l , r ] [l,r] [l,r] 有多少个元素,最大的元素有多么的巨大,只要 1 1 1 没有出现, Mex ( l , r ) \text{Mex}(l,r) Mex(l,r) 的值就是 1 1 1 1 1 1 出现了, 2 2 2 没有出现,值就是 2 2 2……

在区间长度 ( r − l + 1 ) (r-l+1) (rl+1) 固定的情况下, f r − l + 1 f_{r-l+1} frl+1 是一定的,我们自然希望 Mex ( l , r ) \text{Mex}(l,r) Mex(l,r) 越大越好。

如何选择这个区间 [ l , r ] [l,r] [l,r] 呢?我们说过, Mex \text{Mex} Mex 是有“木桶短板效应”的函数,区间 [ l , r ] [l,r] [l,r] 中必须要先有 1 1 1,否则就一切白干了。

选了 1 1 1 进来后,显然如果 2 2 2 没有被选,这个区间再长也没用,那么我们就应该还要尽可能把 2 2 2 选进来。

同理,接下来应该考虑的是能不能把 3 3 3 选进来。然后是 4 , 5 , 6 , ⋯ 4,5,6, \cdots 4,5,6,

因为 a 1.. n a_{1 ..n} a1..n 是一个排列,所以 1 , 2 , 3 , ⋯   , n 1,2,3,\cdots ,n 1,2,3,,n 的位置是确定而且唯一的,所以直接用三个指针 l , r , cur l,r,\texttt{cur} l,r,cur,分别表示现在选中的区间是 [ l , r ] [l,r] [l,r] Mex ( l , r ) \text{Mex}(l,r) Mex(l,r) 的值等于 cur \texttt{cur} cur。根据上面的分析,我们应该考虑区间 [ l , r ] [l,r] [l,r] 是否可以扩充到包含 cur \texttt{cur} cur,如果可以,令 cur \texttt{cur} cur 累加 1 1 1,不可以,那么 Mex ( l , r ) = cur \text{Mex}(l,r)=\texttt{cur} Mex(l,r)=cur

直接枚举答案,可以 O ( n ) O(n) O(n) 解决这道题。

具体实现看代码。

[code] \color{blue}{\texttt{[code]}} [code]

const int N=4e6+100;

int pos[N],a[N],f[N],n;

inline int dist(int d,int l,int r){
	if (l<=pos[d]&&pos[d]<=r) return 0;//included
	if (pos[d]<l) return l-pos[d];
	if (pos[d]>r) return pos[d]-r;
}

int main(){
	n=read();
	for(int i=1;i<=n;i++)
		pos[a[i]=read()]=i;
	for(int i=1;i<=n;i++)
		f[i]=read();
	
	int l=pos[1],r=pos[1],cur=2;
	
	if (f[1]<cur){
		printf("%d",1);
		return 0;
	}
	
	for(int i=2;i<=n;i++){
		//如何判断可否扩展?只要扩展到 cur 后区间长度仍然小于 i 即可
		while (dist(cur,l,r)+(r-l+1)<=i){
			r=max(r,pos[cur]);
			l=min(l,pos[cur]);
			cur++;
		}
		//cur: Mex(l,r)
		
		if (f[i]<cur){
			printf("%d",i);
			return 0;
		}
	}
	
	printf("0");//还要记得无解的情况
	
	return 0;
}

后记:其实人生也像这道题一样,不能一昧地追求那些看上去很有价值的,就像这题里不能地选择那么很大的 a i a_{i} ai 一样,而应该多想如何补上自己的短板(就像这题里让 cur \texttt{cur} cur 尽量大一样)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值