CF1996F Bomb

[Problem   Discription] \color{blue}{\texttt{[Problem Discription]}} [Problem Discription]

给定两个长度为 n n n 的数组 a 1 … n , b 1 … n a_{1 \dots n},b_{1 \dots n} a1n,b1n。你可以进行 k k k 次操作,每次操作可以选择一个 i i i,获得 a i a_{i} ai 的收益,然后使 a i ← max ⁡ ( 0 , a i − b i ) a_{i} \leftarrow \max(0,a_{i}-b_{i}) aimax(0,aibi)。求 k k k 次操作后总收益的最大值。

1 ≤ n ≤ 2 × 1 0 5 , 1 ≤ k , a i , b i ≤ 1 0 9 1 \leq n \leq 2 \times 10^{5}, 1\leq k,a_{i},b_{i} \leq 10^{9} 1n2×105,1k,ai,bi109

多组数据但保证 ∑ n ≤ 2 × 1 0 5 \sum n \leq 2 \times 10^{5} n2×105

[Solution] \color{blue}{\texttt{[Solution]}} [Solution]

首先考虑如果 k k k 较小如何暴力处理。

显然,每次操作肯定是选择是最大的 a i a_{i} ai。只需要用一个优先队列即可求出答案。

然后再考虑 k k k 这么大如何处理。

然后你就会发现暴力对正解似乎没有任何帮助。

其实还是有一些的。每次操作选择的是最大的 a i a_{i} ai,也就是对于任意的一个 x x x,如果 ∃ i s.t. a i ≤ x \exist i \quad \text{s.t.} \quad a_{i} \leq x is.t.aix,那么我们就一定不会选择小于 x x x a i a_{i} ai 进行操作。

利用这个性质我们就自然而然地想到了二分。

维护一个关于 x x x 的函数 cnt \text{cnt} cnt,表示使得每个 a i a_{i} ai 通过足够次操作后小于 x x x 所需要的操作数。

利用二分,我们可以求出 x 0 x_{0} x0 x 0 x_{0} x0 是使得 cnt ( x ) ≥ k \text{cnt}(x) \geq k cnt(x)k最大 x x x

这个 x 0 x_{0} x0 就是这么一条线:最优方案下只要一个 a i a_{i} ai 通过若干次操作后比 x 0 x_{0} x0 小,那么一定不会再被操作。

但是,把每一个 a i a_{i} ai 都进行足够次操作使得其小于 x 0 x_{0} x0 所需要的总操作数 cnt ( x 0 ) \text{cnt}(x_{0}) cnt(x0) 却完全可以大于 k k k。题目的要求是最多只能进行 k k k 次,显然要把多余的 ( cnt ( x 0 ) − k ) (\text{cnt}(x_{0})-k) (cnt(x0)k) 次剔除。

不能暴力!

那怎么办?这是最巧妙的地方。多余的 ( cnt ( x 0 ) − k ) (\text{cnt}(x_{0})-k) (cnt(x0)k) 次操作的收益一定都是 x 0 x_{0} x0

为什么?

根据我们的定义: x 0 x_{0} x0 是使得 cnt ( x ) ≥ k \text{cnt}(x) \geq k cnt(x)k最大 x x x。如果多余的 ( cnt ( x 0 ) − k ) (\text{cnt}(x_{0}) -k) (cnt(x0)k) 次操作有某一次操作的收益 x 1 x_{1} x1 x 0 x_{0} x0 大,那么 cnt ( x 1 ) \text{cnt}(x_{1}) cnt(x1) 一定也比 k k k 大,那么 x 0 x_{0} x0 就不是满足条件的最大的 x x x

Code \color{blue}{\text{Code}} Code

const int N=2e5+100;
typedef long long ll;

int T,n,k,a[N],b[N];

bool check(int mid){
	ll ret=0;//开 ll
	for(int i=1;i<=n;i++)
		if (a[i]>=mid) ret+=(a[i]-mid)/b[i]+1;
	return ret>=k;
}

inline ll calc(int mid){
	ll ans=0,cnt=0;
	for(int i=1;i<=n;i++)
		if (a[i]>=mid){
			int tmp=(a[i]-mid)/b[i]+1;
			cnt+=tmp;
			ans+=1ll*a[i]*tmp-1ll*tmp*(tmp-1)/2*b[i];
		}
	
	return ans+1ll*(k-cnt)*mid;
}

int main(){
	T=read();
	while (T--){
		int l=1,r=0,res=0;
		
		n=read();k=read();
		for(int i=1;i<=n;i++)
			r=max(r,a[i]=read());
		for(int i=1;i<=n;i++)
			b[i]=read();
		
		while (l<=r){
			int mid=(l+r)>>1;
			if (check(mid)){
				l=mid+1;
				res=mid;
			}
			else r=mid-1;
		}//这是一种不需要考虑最终合法解是 l 还是 l+1 还是 r 还是 r-1 的比较方便的二分写法
		
		printf("%lld\n",calc(res));
	}
	
	return 0;
}

read() 是快读函数
  • 11
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值