- 博客(65)
- 收藏
- 关注
原创 软考中级网络工程师(Network Engineer)
网络工程师考试注重理论与实践结合,尤其在下午题中,实际配置能力比纯理论更重要。坚持每天动手实验,遇到问题多查RFC文档或技术论坛,通过考试的同时也能提升实战能力。备考软考中级网络工程师(Network Engineer)需要系统性的规划和针对性练习。
2025-04-28 14:59:25
289
原创 conda和bash主环境的清理
要管理和清理 Conda(或 Bash)安装的包,可以按照以下步骤进行,按照这些步骤操作,你的 Conda/Bash 环境会更加精简高效!混用可能导致依赖冲突,建议优先用 Conda 管理。:这不会删除已安装的包,只是清理下载的。
2025-04-28 10:04:28
298
原创 在 Conda 中,包的安装路径在电脑的哪里
掌握这些路径规则后,你可以更高效地管理 Conda 环境!在 Conda 中,包的安装路径取决于你的。Conda 将所有包存储在 pkgs。,可能导致包管理混乱,建议优先使用。(Linux/macOS)或。是包的唯一哈希标识,对应。无论哪个环境安装的包,就是该包的安装位置。
2025-04-28 10:03:27
361
原创 【Jupyter 启动时如何指定目录】
这样不用改配置,保证每次启动都进入正确的目录!你在 Windows 系统下运行。如果仍跳转到其他目录,可能是。如果不是你想要的位置,可以。
2025-04-27 11:44:32
288
原创 【读论文】面向小目标的轻型变电设备缺陷检测算法
通过三轮分析可见,该论文在ViT-CNN架构融合和小目标检测层面做出实质性突破,但在工程落地和跨场景泛化方面仍需深入验证。建议后续研究重点探索动态剪枝和硬件感知压缩技术,以平衡精度与推理速度的矛盾。该算法通过轻量化设计(参数量4.33M)和计算优化(FLOPs 15.3G),可直接部署于变电站巡检机器人、无人机等移动设备,满足实时检测需求[6][3]。(注:所有技术细节均来自论文原文引用的材料编号)mAP50提升5.3%
2025-04-26 22:09:05
666
原创 【10分钟读论文】Power Transmission Line Inspections电力视觉水文
标题Power Transmission Line Inspections: Methods, Challenges, Current。该期刊作为中游水平的专业刊物,其价值取决于具体研究目标。2024 评分一颗星。
2025-04-26 21:50:03
976
原创 venv环境基础指令以及常见问题汇总(持续更新)
在venv中,没有直接列出所有虚拟环境的命令(因为venv不像 Conda 那样有集中管理机制),但可以通过或实现类似功能。venvdeactivate由于venv不会全局注册环境,你需要手动检查存放环境的目录(如~/envs/假设你的虚拟环境都存放在~/envs/pyvenv.cfg每个venv环境根目录下都有pyvenv.cfg将以下函数添加到~/.bashrc或~/.zshrc,然后运行list_venvslist_venvsvenv~/envs/list_venvs。
2025-04-26 21:29:23
323
原创 什么时候使用Python 虚拟环境(venv)而不用conda
是另一个流行的虚拟环境管理工具(来自 Anaconda/Miniconda)。下面我会详细对比两者的区别,并讲解。激活后,终端提示符会显示。,表示已进入虚拟环境。
2025-04-26 21:12:40
1549
原创 【随机过程】柯尔莫哥洛夫微分方程总结
柯尔莫哥洛夫微分方程(Kolmogorov Equations)是描述**连续时间马尔可夫过程(CTMC)**中概率分布随时间演化的工具。类比:想象一杯水中滴入墨水,墨水分子随机扩散:目标:给定当前时刻ttt的概率分布P(t)P(t)P(t),求未来时刻的概率分布P(t+Δt)P(t+\Delta t)P(t+Δt)。方程形式:dP(t)dt=P(t)⋅Q\frac{dP(t)}{dt} = P(t) \cdot QdtdP(t)=P(t)⋅Q解释:目标:给定未来时刻ttt的条件概率P(t∣s
2025-04-22 20:57:34
822
原创 随机过程,相关函数的一个例题|柯尔莫哥洛夫存在定理
F_{周一, 周三}(x_1, x_2) = F_{周一, 周三, 周五}(x_1, x_2, +\infty)就像你拍了一张全家福(高维),从中裁剪出单人照(低维)时,必须和之前单独拍的个人照一致!“如果你能清晰描述所有有限的‘切片’,那么宇宙一定会帮你拼出完整的‘蛋糕’!即“加入周五的数据后,周一和周三的分布关系不能变”!“高维照片裁剪后,必须和原来拍的低维照片一致!就像用乐高积木的局部拼装规则,还原出整个宇宙!:研究股票价格在周一、周三、周五的联合波动。的所有可能值求期望。:两边的结果必须完全一致!
2025-04-21 16:51:03
595
原创 随机过程笔记
设Ω\OmegaΩ是一个非空集合,FF是由Ω\OmegaΩ的一些子集所构成的集合族,如果FF满足以下三个条件,则称FF是Ω\OmegaΩ上的一个σ\sigmaσ包含全集Ω∈FΩ∈F,即全集Ω\OmegaΩ是FF中的一个元素。对补运算封闭:若A∈FA∈F,则AcΩ−A∈FAcΩ−A∈F。也就是说,如果一个集合AAA属于FF,那么它在全集Ω\OmegaΩ中的补集也属于FF。对可数并运算封闭:若A1A2⋯A1。
2025-04-21 13:54:45
746
原创 【随机过程】第一章考特征函数
gtEeitXgtEeitX其中,XXX是随机变量,iii是虚数单位,ttt是实数参数。特征函数能够唯一确定随机变量的分布,不同的分布对应不同的特征函数。特征函数不仅是概率分布的另一种表达形式,更是分析随机变量性质、独立性、和及其矩的有力工具,广泛应用于概率论和随机过程的分析中。
2025-04-21 11:25:01
626
原创 计算机视觉中,我们经常提到到训练pipeline是什么意思
在计算机视觉(Computer Vision, CV)中,**训练 pipeline(训练流水线)**是指从原始数据输入到最终模型训练完成的端到端流程。它包含一系列有序的步骤,每个步骤对数据进行处理或转换,最终输出一个可用的机器学习模型。通过定义清晰的pipeline,可以高效迭代模型,快速定位问题(如数据质量或超参数选择)。
2025-04-18 20:05:18
552
原创 灰度共生矩阵(GLCM)简介
基本概念灰度共生矩阵(Gray-level Co-occurrence Matrix, GLCM)是一种用于分析图像纹理特征的统计方法。它通过计算图像中特定空间关系的像素对出现的频率,来描述纹理的规律性1。核心思想:统计图像中相距为d、方向为θ的两个像素点,分别具有灰度值i和j的联合概率1。矩阵结构:若图像有L个灰度级,GLCM是一个L×L的矩阵,元素P(i,j)表示灰度值i和j成对出现的次数1。
2025-04-16 17:56:34
447
原创 循环首差链码的通俗解释
表示移动方向依次是:上 → 右 → 上 → 右 → 下 → 下 → 左 → 左。将原始链码转换为相邻方向变化的差值序列,目的是压缩数据或简化分析。链码是一种用数字序列描述图像中物体轮廓的方法。:用“方向变化量”代替“绝对方向”。假设有一段轮廓的链码为。
2025-04-16 17:53:42
138
原创 LeNet-5 介绍
LeNet-5 是由 Yann LeCun 及其团队于 1998 年提出的一种早期卷积神经网络(CNN),主要用于手写数字识别任务。它是现代深度学习中卷积神经网络的奠基之作,结构相对简单,但奠定了CNN的核心设计理念。LeNet-5 的结构如下:虽然 LeNet-5 在手写数字识别任务上取得了成功,但其结构和性能在面对更复杂的任务时显得不足。为了应对这些挑战,研究者提出了一系列改进方法,以下是主要改进方向:LeNet-5 作为早期的 CNN 模型,为后续深度学习的发展奠定了基础。通过引入更深层的网络结构、改
2025-04-16 11:37:43
1210
原创 【Vimium 的使用技巧详解】
显示的链接标签为随机字母,可在设置中启用「Use link hints with numbers」,改为数字标签更易输入。掌握这些技巧后,你的浏览器操作将如 Vim 般行云流水。切标签)开始练习,逐步适应无需鼠标的极简体验!
2025-04-16 10:52:22
835
原创 **Windows 系统**的常用快捷键大全
一款高度可定制的经典文本编辑器,以纯键盘操作为核心设计理念,诞生于1991年,是Unix系统「Vi编辑器」的增强版。
2025-04-15 21:08:04
1248
原创 【人脸识别中的“类内差异”和“类间差异】
类似生活中:不仅要学会区分苹果和橘子(类间差异),还要知道“青苹果和红苹果都是苹果”(类内差异)。DeepID2在SoftmaxLoss(分类老师)基础上,新增了一个。
2025-04-12 23:16:37
1010
2
原创 【激活函数:神经网络的“调味料】
想象你在做菜:为什么需要它?神经网络如果没有激活函数,无论多少层都只能解决“能用直线分割的问题”(比如区分“红苹果”和“青苹果”)。但现实问题更复杂(比如区分“猫”和“狗”),需要激活函数引入“弯弯绕绕”的决策边界。指数放大差距(避免人情分):归一化成概率:继续选秀比喻:如果中间层用Softmax:相当于每场海选都强制选手PK出唯一胜者,会丢失多样性(比如“猫”和“狗”可能同时值得晋级)。隐藏层:ReLU像“勤劳的工人”,快速筛选有用特征。输出层:Softmax像“严谨的法官”,给出最终判决。
2025-04-12 17:55:38
1097
原创 MaxPooling层的作用(通俗解释)
想象老师在课堂上提问,每个小组选一个代表发言。MaxPooling就是选每个区域"最活跃"的特征值作为代表。比如用2×2的窗口,每次取4个数字中的最大值,这样图片尺寸就缩小一半。就像看模糊的照片也能认出熟人一样,MaxPooling让网络对物体位置变化不敏感。如果猫在图片左边或右边,经过MaxPooling后都能提取出相似的猫特征。就像把一张高清照片缩小尺寸一样,MaxPooling会把特征图变小。课外-深度学习原理.pptx - 池化层的作用说明。每个2×2方块取最大值输出。
2025-04-12 15:14:05
304
原创 全连接层与Softmax的通俗解释
完成高维特征空间到隐含特征空间的转换(如4096维)[^1]:实现隐含空间到分类空间的映射(如1000维)[^1]:处理对齐后人脸的不同区域(眼、鼻、嘴等)[^1]这种阶梯式降维更平滑,保留更多有用信息[^2]
2025-04-12 12:17:37
735
原创 为什么调用的DeepSeek-V3 api不支持处理图像,网页版免费则可以直接处理截图
(类似 GPT-4 Vision 的功能)。,那 API 也可能支持图片。你可以留意官方更新 😊。如果 DeepSeek 像 OpenAI 一样推出。目前,DeepSeek-V3 主要是。等待 DeepSeek 开放。),让开发者也能处理图片输入。支持截图上传和处理,但。(尚未对外开放 API)。
2025-04-10 11:34:45
745
原创 【论文精读】Multi-scale Neighbourhood Feature Interaction Network
其中,( P_c )和( P_g )分别为常规卷积与Ghost卷积的参数量,( c )为输入通道数,( k )为卷积核尺寸,( c’ )为输出通道数,( h’ )和( w’ )为输出特征图尺寸,( n )为深度卷积数量(( n \ll c )),( d )为线性变换卷积核的平均尺寸。MNFI-Net的性能与当前先进的光伏缺陷检测模型进行了对比,涵盖两阶段模型(如Sparse R-CNN)、单阶段模型(如YOLO系列)和基于Transformer的模型(如DETR)。最终输出为多粒度特征的组合。
2025-04-09 21:51:50
335
原创 损失函数篇——针对YOLO-MIFIN模型
通过联合优化EIoU与NWD,BE Loss在光伏缺陷检测中实现了大目标的精准定位与小目标的稳定检出,为多尺度目标检测提供了通用损失设计范式。
2025-04-09 21:24:41
660
原创 【论文粗读】Multi-scale Neighbourhood Feature Interaction Network
(Multi-scale Neighbourhood Feature Interaction Network)的新型网络架构,专注于解决光伏电池表面缺陷检测中的多尺度与复杂背景噪声问题。,在复杂背景下实现了高精度的光伏缺陷检测。其模块化设计为YOLO系列提供了新的优化思路,尤其在多尺度目标检测领域具有重要参考价值。这篇论文提出了一种名为。MNFI-Net通过。
2025-04-08 19:38:10
665
原创 训练日志:旋转编码器不能显示出负值,以及旋转编码器输出如何消抖?
当Encoder_Count–导致数值为负时,会溢出为最大值(如0xFFFF),而Num同样无法正确累加负值。Encoder_Count和Num被定义为uint16_t(无符号整型),无法存储负值。程序有抖动,现对其做消抖程序处理。
2025-04-08 16:53:25
189
深度卷积神经网络在大规模图像分类中的应用研究-基于ImageNet数据集
2024-12-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人