【关于DeepFace中L4/L5/L6层的结构解析】

关于DeepFace中L4/L5/L6层的结构解析

1. L4/L5/L6层的实际结构关系

根据DeepFace的原始设计:

正确部分:

  • 严格对齐前提:确实需要3D对齐的人脸输入1
  • 位置特异性:不同卷积核针对不同面部区域1

需要修正的部分:

  • 层级关系:L4→L5→L6是顺序连接的层级结构1
    • 输入图像先经过L4处理
    • L4的输出作为L5的输入
    • L5的输出再作为L6的输入1
  • 参数独立性:每层有自己的独立参数(不共享)1

2. 网络结构的详细数据流

典型处理流程:

  1. 输入:3D对齐后的152×152人脸图像1
  2. 前处理
    • C1:11×11卷积 → 池化
    • C3:9×9卷积1
  3. 主体结构
    • L4层:9×9局部卷积 → 输出144×144特征图
    • L5层:7×7局部卷积 → 输出138×138特征图
    • L6层:5×5局部卷积 → 输出134×134特征图1
  4. 全连接层
    • F7:4096维
    • F8:4030维(对应4030个类别)1

关键计算示例:

以L4→L5为例:

  • L4输入:152×152
  • L4卷积核:9×9
  • L4输出:(152-9+1)×(152-9+1)=144×144
  • L5输入:144×144
  • L5卷积核:7×7
  • L5输出:(144-7+1)×(144-7+1)=138×1381

3. 与传统CNN的核心区别

特性传统CNNDeepFace局部连接
参数共享全图共享相同卷积核1每个位置独立参数1
卷积核大小同层固定1同层固定但逐层减小1
典型应用通用图像识别1严格对齐的人脸1
参数量较少1极大(440万数据支持)1
位置敏感性不敏感1高度敏感(依赖对齐)1

4. 设计原理的深层原因

  1. 解剖学依据

    • 人脸的鼻子/眼睛/嘴巴等部位具有不同的局部特征1
    • 需要不同大小的感受野来捕捉:
      • L4(9×9):较大区域特征(如整个眼睛区域)
      • L6(5×5):精细局部特征(如眼角纹理)1
  2. 层次化特征提取

    • 低层(L4):提取基础局部特征
    • 中层(L5):组合简单特征
    • 高层(L6):形成高级语义特征1
  3. 工程验证

    • Facebook使用4030人的440万张人脸验证有效性1
    • 在LFW上达到97.35%准确率(接近人类水平)1

  1. 10图像识别(人脸识别)1.pptx - DeepFace网络结构细节与性能指标 ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎ ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值