关于DeepFace中L4/L5/L6层的结构解析
1. L4/L5/L6层的实际结构关系
根据DeepFace的原始设计:
正确部分:
需要修正的部分:
2. 网络结构的详细数据流
典型处理流程:
- 输入:3D对齐后的152×152人脸图像1
- 前处理:
- C1:11×11卷积 → 池化
- C3:9×9卷积1
- 主体结构:
- L4层:9×9局部卷积 → 输出144×144特征图
- L5层:7×7局部卷积 → 输出138×138特征图
- L6层:5×5局部卷积 → 输出134×134特征图1
- 全连接层:
- F7:4096维
- F8:4030维(对应4030个类别)1
关键计算示例:
以L4→L5为例:
- L4输入:152×152
- L4卷积核:9×9
- L4输出:(152-9+1)×(152-9+1)=144×144
- L5输入:144×144
- L5卷积核:7×7
- L5输出:(144-7+1)×(144-7+1)=138×1381
3. 与传统CNN的核心区别
特性 | 传统CNN | DeepFace局部连接 |
---|---|---|
参数共享 | 全图共享相同卷积核1 | 每个位置独立参数1 |
卷积核大小 | 同层固定1 | 同层固定但逐层减小1 |
典型应用 | 通用图像识别1 | 严格对齐的人脸1 |
参数量 | 较少1 | 极大(440万数据支持)1 |
位置敏感性 | 不敏感1 | 高度敏感(依赖对齐)1 |
4. 设计原理的深层原因
-
解剖学依据:
-
层次化特征提取:
- 低层(L4):提取基础局部特征
- 中层(L5):组合简单特征
- 高层(L6):形成高级语义特征1
-
工程验证: