为什么MySQL只查一行的语句,也执行这么慢?

本文详细分析了MySQL查询性能优化的两种情况:查询长时间不返回和查询慢。针对查询长时间不返回,分别探讨了等待MDL锁、等待表 flush 和等待行锁三种情况,并提供了相应的解决策略。对于查询慢,通过实例解释了全表扫描和事务导致的执行慢问题。通过对查询语句的深入理解和优化,可以显著提升数据库查询效率。
摘要由CSDN通过智能技术生成

      该文章为《MySQL实战45讲》课程学习笔记及部分摘抄,原课程链接MySQL 实战 45 讲 (geekbang.org)   

          一般情况下,如果我说查询性能优化,你首先会想到一些复杂的语句,想到查询需要返回大量的数据。但有些情况下,“查一行”,也会执行得特别慢。

        需要说明的是,如果 MySQL 数据库本身就有很大的压力,导致数据库服务器 CPU 占用率很高或 ioutil(IO 利用率)很高,这种情况下所有语句的执行都有可能变慢,不属于我们的讨论范围。

        为了便于描述,我还是构造一个表,基于这个表来说明今天的问题。这个表有两个字段 id 和 c,并且我在里面插入了 10 万行记录。

mysql> CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `c` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;

delimiter ;;
create procedure idata()
begin
  declare i int;
  set i=1;
  while(i<=100000) do
    insert into t values(i,i);
    set i=i+1;
  end while;
end;;
delimiter ;

call idata();

第一类:查询长时间不返回

        如图 1 所示,在表 t 执行下面的 SQL 语句:

mysql> select * from t where id=1;

图 1 查询长时间不返回 

         一般碰到这种情况的话,大概率是表 t 被锁住了。接下来分析原因的时候,一般都是首先执行一下 show processlist 命令,看看当前语句处于什么状态。然后我们再针对每种状态,去分析它们产生的原因、如何复现,以及如何处理。

等 MDL 锁

        如图 2 所示,就是使用 show processlist 命令查看 Waiting for table metadata lock 的示意图。

图 2 Waiting for table metadata lock 状态示意图

         出现这个状态表示的是,现在有一个线程正在表 t 上请求或者持有 MDL 写锁,把 select 语句堵住了

        通过查询 sys.schema_table_lock_waits 这张表,我们就可以直接找出造成阻塞的 process id,把这个连接用 kill 命令断开即可。

图 4 查获加表锁的线程 id 

等 flush

        接下来,我给你举另外一种查询被堵住的情况我在表 t 上,执行下面的 SQL 语句:

mysql> select * from information_schema.processlist where id=1;

        可以看一下图 5。我查出来这个线程的状态是 Waiting for table flush,你可以设想一下这是什么原因。

图 5 Waiting for table flush 状态示意图 

        这个状态表示的是,现在有一个线程正要对表 t 做 flush 操作。MySQL 里面对表做 flush 操作的用法,一般有以下两个:

flush tables t with read lock;

flush tables with read lock;

        这两个 flush 语句,如果指定表 t 的话,代表的是只关闭表 t;如果没有指定具体的表名,则表示关闭 MySQL 里所有打开的表。

        但是正常这两个语句执行起来都很快,除非它们也被别的线程堵住了。

        所以,出现 Waiting for table flush 状态的可能情况是:有一个 flush tables 命令被别的语句堵住了,然后它又堵住了我们的 select 语句。

        现在,我们一起来复现一下这种情况,复现步骤如图 6 所示:

 图 6 Waiting for table flush 的复现步骤

        在 session A 中,我故意每行都调用一次 sleep(1),这样这个语句默认要执行 10 万秒,在这期间表 t 一直是被 session A“打开”着。然后,session B 的 flush tables t 命令再要去关闭表 t,就需要等 session A 的查询结束。这样,session C 要再次查询的话,就会被 flush 命令堵住了。

        图 7 是这个复现步骤的 show processlist 结果。这个例子的排查也很简单,你看到这个 show processlist 的结果,肯定就知道应该怎么做了。

图 7 Waiting for table flush 的 show processlist 结果 

   等行锁

        现在,经过了表级锁的考验,我们的 select 语句终于来到引擎里了。        

mysql> select * from t where id=1 lock in share mode; 

         由于访问 id=1 这个记录时要加读锁,如果这时候已经有一个事务在这行记录上持有一个写锁,我们的 select 语句就会被堵住。

图 8 行锁复现 

图 9 行锁 show processlist 现场 

        显然,session A 启动了事务,占有写锁,还不提交,是导致 session B 被堵住的原因。这个问题并不难分析,但问题是怎么查出是谁占着这个写锁。如果你用的是 MySQL 5.7 版本,可以通过 sys.innodb_lock_waits 表查到。

mysql> select * from t sys.innodb_lock_waits where locked_table='`test`.`t`'\G

图 10 通过 sys.innodb_lock_waits 查行锁 

         可以看到,这个信息很全,4 号线程是造成堵塞的罪魁祸首。而干掉这个罪魁祸首的方式,就是 KILL QUERY 4 或 KILL 4。

        不过,这里不应该显示“KILL QUERY 4”。这个命令表示停止 4 号线程当前正在执行的语句,而这个方法其实是没有用的。因为占有行锁的是 update 语句,这个语句已经是之前执行完成了的,现在执行 KILL QUERY,无法让这个事务去掉 id=1 上的行锁。

        实际上,KILL 4 才有效,也就是说直接断开这个连接。这里隐含的一个逻辑就是,连接被断开的时候,会自动回滚这个连接里面正在执行的线程,也就释放了 id=1 上的行锁。

第二类:查询慢

        先来看一条你一定知道原因的 SQL 语句:

mysql> select * from t where c=50000 limit 1;

         由于字段 c 上没有索引,这个语句只能走 id 主键顺序扫描,因此需要扫描 5 万行。

        作为确认,你可以看一下慢查询日志。注意,这里为了把所有语句记录到 slow log 里,我在连接后先执行了 set long_query_time=0,将慢查询日志的时间阈值设置为 0。

图 11 全表扫描 5 万行的 slow log

         Rows_examined 显示扫描了 50000 行。你可能会说,不是很慢呀,11.5 毫秒就返回了,我们线上一般都配置超过 1 秒才算慢查询。但你要记住:坏查询不一定是慢查询。我们这个例子里面只有 10 万行记录,数据量大起来的话,执行时间就线性涨上去了。扫描行数多,所以执行慢,这个很好理解。

        但是接下来,我们再看一个只扫描一行,但是执行很慢的语句。

mysql> select * from t where id=1;

图 12 扫描一行却执行得很慢 

         虽然扫描行数是 1,但执行时间却长达 800 毫秒。如果我把这个 slow log 的截图再往下拉一点,你可以看到下一个语句,select * from t where id=1 lock in share mode,执行时扫描行数也是 1 行,执行时间是 0.2 毫秒。

图 13 加上 lock in share mode 的 slow log 

看上去是不是更奇怪了?按理说 lock in share mode 还要加锁,时间应该更长才对啊。

图 14 两个语句的输出结果 

        第一个语句的查询结果里 c=1,带 lock in share mode 的语句返回的是 c=1000001。看到这里应该有更多的同学知道原因了。

图 15 复现步骤 

        你看到了,session A 先用 start transaction with consistent snapshot 命令启动了一个事务,之后 session B 才开始执行 update 语句。session B 执行完 100 万次 update 语句后,id=1 这一行处于什么状态呢?你可以从图 16 中找到答案。    

图 16 id=1 的数据状态

         session B 更新完 100 万次,生成了 100 万个回滚日志 (undo log)。带 lock in share mode 的 SQL 语句,是当前读,因此会直接读到 1000001 这个结果,所以速度很快;而 select * from t where id=1 这个语句,是一致性读,因此需要从 1000001 开始,依次执行 undo log,执行了 100 万次以后,才将 1 这个结果返回。

        注意,undo log 里记录的其实是“把 2 改成 1”,“把 3 改成 2”这样的操作逻辑,画成减 1 的目的是方便看图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值